Thrombotic Conditions in Patients with COVID-19: Dynamics of D-Dimer and Tactics of Anticoagulant Therapy

Keywords: pulmonary embolism, coronavirus disease 2019, D-dimer, venous thrombosis, arterial thrombosis, thromboprophylaxis, antiplatelet agents


In patients with COVID-19, histological examination of the pulmonary vessels shows serious disorders (local thrombosis and microangiopathy), significantly different to those in the control group composed of patients with influenza. Some studies have shown that coronavirus enters cells by binding angiotensin-converting enzyme 2 which is found mainly on the alveolar epithelium and endothelium. The increase in D-dimer levels is typical for patients with COVID-19. Although many inflammatory processes can affect D-dimer levels, an increase in D-dimer during COVID-19 is more likely to indicate thrombosis.

The aim. To analyze the patients who have suffered from COVID-19 and to determine possible risk factors for the development of thrombotic complications and define the surgical or medical therapy tactics.

Material and methods. The study was conducted from October 2020 to April 2021 in Ukraine (Zaporizhzhia, Uzhhorod, Kherson and Kyiv). We analyzed 121 patients aged 46.9± 15.3 years, 64 (52.8%) men and 57 (47.1%) women. All the patients had positive PCR test for COVID-19. The changes in D-dimer were analyzed.

Results. Forty-one (33.9%) patients had thrombotic complications. Pulmonary embolism (PE) was diagnosed in 14 patients, deep vein thrombosis (DVT) in 17, acute stroke in 2 and peripheral artery thrombosis in 8 cases.

An increase in D-dimer level was observed in most patients and was not associated with clinical manifestations of thrombosis. At a D-dimer level of 11,000-10,564 ng/ml the patients had clinical symptoms of thrombotic condition which was confirmed by computed tomography or ultrasound examination. At an increase over 725-7000 ng/ml, there were no clinical signs of thrombosis.

We performed standard medical therapy in patients with PE and DVT. In case of arterial thrombosis open surgery was performed in 4 patients and direct catheter thrombolysis in 1 case.

Conclusion. In our opinion, anticoagulants should be prescribed for patients with a D-dimer level of more than 700 ng/ml. Full anticoagulation is prescribed for severe forms of COVID-19 or confirmed thrombosis. We didn’t find any correlation between the development of thrombotic complications in patients with COVID-19 and comorbidities, body mass index and other factors. Medical therapy was successful in all cases of PE and DVT, anticoagulants were prescribed for 1 year. Femoral artery thrombectomy was successfully performed in 4 patients. After direct catheter thrombolysis we got peripheral pulse. In all cases of arterial thrombosis, we prescribed anticoagulants for 2 months after discharge and acetylsalicylic acid for a long time.


  1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
  2. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13.
  3. Boulay F, Berthier F, Schoukroun G, Raybaut C, Gendreike Y, Blaive B. Seasonal variations in hospital admission for deep vein thrombosis and pulmonary embolism: analysis of discharge data. BMJ. 2001;323(7313):601-2.
  4. Woodhouse PR, Khaw KT, Plummer M, Foley A, Meade TW. Seasonal variations of plasma fibrinogen and factor VII activity in the elderly: winter infections and death from cardiovascular disease. Lancet. 1994;343(8895):435-9.
  5. Varga Z, Flammer AJ, Steiger P, Haberecker M, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-8.
  6. Léonard-Lorant I, Delabranche X, Séverac F, Helms J, Pauzet C, Collange O, Schneider F, Labani A, Bilbault P, Molière S, Leyendecker P, Roy C, Ohana M. Acute pulmonary embolism in patients with COVID-19 at CT angiography and relationship to D-dimer levels. Radiology. 2020;296(3):E189-E191.
  7. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18(6):1421-4.
  8. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.
  9. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, Li WW, Li VW, Mentzer SJ, Jonigk D. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120-8.
  10. Marik P. EVMS critical care COVID-19 management protocol [Internet]. 2020; [cited 2022 Jan 9]. Available from:
  11. Ejaz H, Alsrhani A, Zafar A, Javed H, Junaid K, Abdalla AE, Abosalif KOA, Ahmed Z, Younas S. COVID-19 and comorbidities: Deleterious impact on infected patients. J Infect Public Health. 2020;13(12):1833-9.
  12. Sanyaolu A, Okorie C, Marinkovic A, Patidar R, Younis K, Desai P, Hosein Z, Padda I, Mangat J, Altaf M. Comorbidity and its Impact on Patients with COVID-19. SN Compr Clin Med. 2020;2(8):1069-76.
  13. Chen G, Li X, Gong Z, Xia H, Wang Y, Wang X, Huang Y, Barajas-Martinez H, Hu D. Hypertension as a sequela in patients of SARS-CoV-2 infection. PLoS One. 2021;16(4):e0250815.
  14. Shibata S, Arima H, Asayama K, Hoshide S, Ichihara A, Ishimitsu T, Kario K, Kishi T, Mogi M, Nishiyama A, Ohishi M, Ohkubo T, Tamura K, Tanaka M, Yamamoto E, Yamamoto K, Itoh H. Hypertension and related diseases in the era of COVID-19: a report from the Japanese Society of Hypertension Task Force on COVID-19. Hypertens Res. 2020;43(10):1028-46.
  15. Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical mana gement. Nat Rev Endocrinol. 2021;17(1):11-30.
  16. Green I, Merzon E, Vinker S, Golan-Cohen A, Magen E. COVID-19 Susceptibility in Bronchial Asthma. J Allergy Clin Immunol Pract. 2021;9(2):684-92.e1.
  17. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-3.
  18. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-7.
  19. Wichmann D, Sperhake JP, Lütgehetmann M, Steurer S, Edler C, Heinemann A, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020;173(4):268-77.
  20. Middeldorp S, Coppens M, van Haaps TF, Foppen M, Vlaar AP, Müller MCA, Bouman CCS, Beenen LFM, Kootte RS, Heijmans J, Smits LP, Bonta PI, van Es N. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. 2020;18(8):1995-2002.
  21. Poissy J, Goutay J, Caplan M, Parmentier E, Duburcq T, Lassalle F, Jeanpierre E, Rauch A, Labreuche J, Susen S; Lille ICU Haemostasis COVID-19 Group. Pulmonary embolism in patients with COVID-19: awareness of an increased prevalence. Circulation. 2020;142(2):184-6.
  22. Grillet F, Behr J, Calame P, Aubry S, Delabrousse E. Acute pulmonary embolism associated with COVID-19 pneumonia detected with pulmonary CT angiography. Radiology. 2020;296(3):E186-8.
  23. Starko KM. Salicylates and Pandemic Influenza Mortality, 1918-1919 Pharmacology, Pathology, and Historic Evidence. Clin Infect Dis. 2009;49(9):1405-10.
  24. Jefferies S, Weatherall M, Young P, Eyers S, Perrin KG, Beasley CR. The Effect of Antipyretic Medications on Mortality in Critically Ill Patients with Infection: A Systematic Review and Meta-analysis. Crit Care Resusc. 2011;13(2):125-31.
  25. McGonagle D, O’Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020;2(7):e437-45.
  26. Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089-98.
  27. Harzallah I, Debliquis A, Drénou B. Lupus anticoagulant is frequent in patients with Covid-19. J Thromb Haemost. 2020;18(8):2064-5.
  28. Grimmer B, Kuebler WM. The endothelium in hypoxic pulmonary vasoconstriction. J Appl Physiol. 2017;123(6):1635-46.
  29. Medcalf RL, Keragala CB, Myles PS. Fibrinolysis and COVID-19: A plasmin paradox. J Thromb Haemost. 2020;18(9):2118-22.
  30. Panigada M, Bottino N, Tagliabue P, Grasselli G, Novembrino C, Chantarangkul V, Pesenti A, Peyvandi F, Tripodi A. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020;18(7):1738-42.
  31. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094-9.
  32. Sadeghipour P, Talasaz AH, Rashidi F, Sharif-Kashani B, Beigmohammadi MT, Farrokhpour M, et al. Effect of Intermediate-Dose vs Standard-Dose Prophylactic Anticoagulation on Thrombotic Events, Extracorporeal Membrane Oxygenation Treatment, or Mortality Among Patients With COVID-19 Admitted to the Intensive Care Unit: The INSPIRATION Randomized Clinical Trial. JAMA. 2021;325(16):1620-30.
  33. Berger JS, Connors JM. Anticoagulation in COVID-19: reaction to the ACTION trial. Lancet. 2021;397(10291):2226-8.
  34. Fournier M, Faille D, Dossier A, Mageau A, Nicaise Roland P, Ajzenberg N, et al. Arterial Thrombotic Events in Adult In-patients With COVID-19. Mayo Clin Proc. 2021;96(2):295-303.
  35. Etkin Y, Conway AM, Silpe J, Qato K, Carroccio A, Manvar-Singh P, Giangola G, Deitch JS, Davila-Santini L, Schor JA, Singh K, Mussa FF, Landis GS. Acute Arterial Thromboembolism in Patients with COVID-19 in the New York City Area. Ann Vasc Surg. 2021;70:290-4.
How to Cite
Nykonenko, A. O., Podluzhniy, H. S., Koliada, N. A., Levchak, Y. A., Hardubey, Y. Y., Zubryk, I. V., Naumova, O. O., Nykonenko, O. S., Horlenko, F. V., Matvieiev, S. O., & Riabokon, O. V. (2022). Thrombotic Conditions in Patients with COVID-19: Dynamics of D-Dimer and Tactics of Anticoagulant Therapy. Ukrainian Journal of Cardiovascular Surgery, 30(1), 64-70.