Цитокіновий шторм у патогенезі ускладнень при COVID-19

  • О. В. Распутняк ДУ «Національний інститут серцево-судинної хірургії імені М. М. Амосова НАМН України», м. Київ, Україна https://orcid.org/0000-0002-8716-6753
  • Т. І. Гавриленко ДУ «Національний інститут серцево-судинної хірургії імені М. М. Амосова НАМН України», м. Київ, Україна https://orcid.org/0000-0002-1905-8240
  • О. А. Підгайна ДУ «Національний науковий центр «Інститут кардіології, клінічної та регенеративної медицини імені академіка М. Д. Стражеска НАМН України», м. Київ, Україна https://orcid.org/0000-0003-2388-3275
  • Л. М. Шнайдер ДУ «Національний інститут серцево-судинної хірургії імені М. М. Амосова НАМН України», м. Київ, Україна https://orcid.org/0009-0009-2512-1208
  • О. М. Ломаковський ДУ «Національний науковий центр «Інститут кардіології, клінічної та регенеративної медицини імені академіка М. Д. Стражеска НАМН України», м. Київ, Україна https://orcid.org/0000-0002-2490-2733
  • С. А. Калашніков ДУ «Національний інститут серцево-судинної хірургії імені М. М. Амосова НАМН України», м. Київ, Україна https://orcid.org/0000-0002-5027-8874
Ключові слова: COVID-19, цитокіни, вірус SARS-CoV-2, інтерлейкін-1, інтерлейкін-6, фактор некрозу пухлин альфа, судинний ендотеліальний фактор росту, інтерлейкін-10

Анотація

Мета – аналіз та узагальнення результатів новітніх досліджень щодо ролі цитокінового шторму в патогенезі ускладнень COVID-19 та визначенні клінічних і патологічних ознак наслідків цитокінового шторму в пацієнтів, які перенесли COVID-19.

У статті розглянуто роль прозапальних і протизапальних чинників цитокінової мережі у формуванні імунної відповіді на COVID-19, наведено характеристику цитокінового шторму, як неадекватної реакції вродженого та адаптивного імунітету при інфекційних хворобах та COVID-19, проаналізовано можливі механізми розвитку цитокінового шторму, його вплив на важкість перебігу COVID-19 та розвиток ускладнень у разі цієї інфекції. Мультифакторний аналіз представлених у світовій практиці результатів досліджень у цьому напрямку підтверджує наукові гіпотези щодо провідного внеску цитокінового шторму в патогенез ускладнень при COVID-19. За даними численних досліджень, цитокіновий шторм та неконтрольоване запалення визнані визначальними чинниками в патогенезі розвитку ускладнень та летального результату в пацієнтів, інфікованих вірусом SARS-CoV-2. Незаперечним є той факт, що тригером для цитокінового шторму є неконтрольована імунна відповідь, яка характеризується безперервною активацією та експансією імунних клітин, що продукують величезну кількість прозапальних цитокінів не лише системно, а й локально, що призводить до ураження органів. Цей каскад патологічних імунних реакцій може відбуватися послідовно або паралельно в різних органах і системах організму, що призводить до мультиорганноїнедостатності та смерті пацієнта.

Посилання

  1. Shahgolzari M, Yavari A, Arjeini Y, Miri SM, Darabi A, Mozaffari Nejad AS, et al. Immunopathology and Immunopathogenesis of COVID-19, what we know and what we should learn. Gene Rep. 2021;25:101417. https://doi.org/10.1016/j.genrep.2021.101417
  2. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinicalcourse and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3
  3. Montazersaheb S, Hosseiniyan Khatibi SM, Hejazi MS, Tarhriz V, Farjami A, Ghasemian Sorbeni F, et al. COVID-19 infection: an overview on cytokine storm and related interventions. Virol J. 2022;19(1):92. https://doi.org/10.1186/s12985-022-01814-1
  4. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363-374. https://doi.org/10.1038/s41577-020-0311-8
  5. Manjili RH, Zarei M, Habibi M, Manjili MH. COVID-19 as anAcute Inflammatory Disease. J Immunol. 2020;205(1):12-19. https://doi.org/10.4049/jimmunol.2000413
  6. Basheer M, Saad E, Assy N. The Cytokine Storm in COVID-19: The Strongest Link to Morbidity and Mortality in the Current Epidemic. COVID. 2022;2(5):540-552. https://doi.org/10.3390/covid2050040
  7. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
  8. García LF. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front Immunol. 2020;11:1441. https://doi.org/10.3389/fimmu.2020.01441
  9. Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20(5):269-270. https://doi.org/10.1038/s41577-020-0308-3
  10. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424-432. https://doi.org/10.1002/jmv.25685
  11. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1-9. https://doi.org/10.12932/AP-200220-0772
  12. Tang XD, Ji TT, Dong JR, Feng H, Chen FQ, Chen X, et al. Pathogenesis and Treatment of Cytokine Storm Induced by Infectious Diseases. Int J Mol Sci. 2021;22(23):13009. https://doi.org/10.3390/ijms222313009
  13. Xu SW, Ilyas I, Weng JP. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin. 2023;44(4):695-709. https://doi.org/10.1038/s41401-022-00998-0
  14. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529-539. https://doi.org/10.1007/s00281-017-0629-x
  15. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the Eye of the Cytokine Storm. Microbiol Mol Biol Rev. 2012;76(1):16-32. https://doi.org/10.1128/MMBR.05015-11
  16. Trypsteen W, Van Cleemput J, Snippenberg WV, Gerlo S, Vandekerckhove L. On the whereabouts of SARS-CoV-2 in the human body: A systematic review. PLoS Pathog. 2020;16(10):e1009037. https://doi.org/10.1371/journal.ppat.1009037
  17. Braciale TJ, Hahn YS. Immunity to viruses. Immunol Rev. 2013;255(1):5-12. https://doi.org/10.1111/imr.12109
  18. Kohno K, Koya-Miyata S, Harashima A, Tsukuda T, Katakami M, Ariyasu T, et al. Inflammatory M1-like macrophages polarized by NK-4 undergo enhanced phenotypic switching to an anti-inflammatory M2-like phenotype upon co-culture with apoptotic cells. J Inflamm (Lond). 2021;18(1):2. https://doi.org/10.1186/s12950-020-00267-z
  19. Ronco C, Reis T, De Rosa S. Coronavirus Epidemic and Extracorporeal Therapies in Intensive Care: si vis pacem para bellum. Blood Purif. 2020;49(3):255-258. https://doi.org/10.1159/000507039
  20. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe. 2020;27(6):992-1000.e3. https://doi.org/10.1016/j.chom.2020.04.009
  21. Kany S, Vollrath JT, Relja B. Cytokines in Inflammatory Disease. Int J Mol Sci. 2019;20(23):6008. https://doi.org/10.3390/ijms20236008
  22. Boraschi D. What Is IL-1 for? The Functions of Interleukin-1 Across Evolution. Front Immunol. 2022;13:872155. https://doi.org/10.3389/fimmu.2022.872155
  23. Tanaka T, Narazaki M, Kishimoto T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295. https://doi.org/10.1101/cshperspect.a016295
  24. Mauer J, Denson JL, Brüning JC. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol. 2015;36(2):92-101. https://doi.org/10.1016/j.it.2014.12.008
  25. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813(5):878-888. https://doi.org/10.1016/j.bbamcr.2011.01.034
  26. Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL, Borca MV. The Role of Interleukin 6 During Viral Infections. Front Microbiol. 2019;10:1057. https://doi.org/10.3389/fmicb.2019.01057
  27. Wang X, Tang G, Liu Y, Zhang L, Chen B, Han Y, et al. The role of IL-6 in coronavirus, especially in COVID-19. Front Pharmacol. 2022;13:1033674. https://doi.org/10.3389/fphar.2022.1033674
  28. Wang Chau C, Sugimura R. COVID-19: Locked in a pro-inflammatory state. Elife. 2022;11:e80699. https://doi.org/10.7554/eLife.80699
  29. Abbasifard M, Khorramdelazad H. The bio-mission of interleukin-6 in the pathogenesis of COVID-19: A brief lookat potential therapeutic tactics. Life Sci. 2020;257:118097. https://doi.org/10.1016/j.lfs.2020.118097
  30. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513. https://doi.org/10.1016/S0140-6736(20)30211-7
  31. Yin JX, Agbana YL, Sun ZS, Fei SW, Zhao HQ, Zhou XN, et al. Increased interleukin-6 is associated with long COVID-19: a systematic review and meta-analysis. Infect Dis Poverty. 2023;12(1):43. https://doi.org/10.1186/s40249-023-01086-z
  32. van Loo G, Bertrand MJM. Death by TNF: a road to inflammation. Nat Rev Immunol. 2023;23(5):289-303. https://doi.org/10.1038/s41577-022-00792-3
  33. Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016;12(1):49-62. https://doi.org/10.1038/nrrheum.2015.169
  34. Guo Y, Hu K, Li Y, Lu C, Ling K, Cai C, et al. Targeting TNF-α for COVID-19: Recent Advanced and Controversies. Front Public Health. 2022;10:833967. https://doi.org/10.3389/fpubh.2022.833967
  35. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-848. https://doi.org/10.1007/s00134-020-05991-x
  36. Mazzoni A, Salvati L, Maggi L, Capone M, Vanni A, Spinicci M,et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J Clin Invest. 2020;130(9):4694-4703.https://doi.org/10.1172/JCI138554
  37. Tzeng HE, Tsai CH, Chang ZL, Su CM, Wang SW, Hwang WL, et al. Interleukin-6 induces vascular endothelial growth factor expression and promotes angiogenesis through apoptosis signal-regulating kinase 1 in human osteosarcoma. Biochem Pharmacol. 2013;85(4):531-540. https://doi.org/10.1016/j.bcp.2012.11.021
  38. Sahebnasagh A, Nabavi SM, Kashani HRK, Abdollahian S,Habtemariam S, Rezabakhsh A. Anti-VEGF agents: As appealing targets in the setting of COVID-19 treatment in critically ill patients. Int Immunopharmacol. 2021;101(Pt B):108257. https://doi.org/10.1016/j.intimp.2021
  39. Huertas A, Montani D, Savale L, Pichon J, Tu L, Parent F, et al.Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)? Eur Respir J. 2020;56(1):2001634. https://doi.org/10.1183/13993003.01634-2020
  40. Norooznezhad AH, Mansouri K. Endothelial cell dysfunction, coagulation, and angiogenesis in coronavirus disease 2019 (COVID-19). Microvasc Res. 2021;137:104188. https://doi.org/10.1016/j.mvr.2021.104188
  41. Josuttis D, Schwedler C, Heymann G, Gümbel D, Schmittner MD, Kruse M, et al. Vascular Endothelial Growth Factor as Potential Biomarker for COVID-19 Severity. J Intensive Care Med. 2023;38(12):1165-1173. https://doi.org/10.1177/08850666231186787
  42. Islam H, Chamberlain TC, Mui AL, Little JP. Elevated Interleukin-10 Levels in COVID-19: Potentiation of Pro- Inflammatory Responses or Impaired Anti-Inflammatory Action? Front Immunol. 2021;12:677008. https://doi.org/10.3389/fimmu.2021.677008
  43. Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9(1):1123-1130. https://doi.org/10.1080/22221751.2020
  44. Dhar SK, K V, Damodar S, Gujar S, Das M. IL-6 and IL-10 as predictors of disease severity in COVID-19 patients: results from meta-analysis and regression. Heliyon. 2021;7(2):e06155. https://doi.org/10.1016/j.heliyon.2021.e06155
  45. Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020;368(6490):473-474. https://doi.org/10.1126/science.abb8925
  46. Ferrara JL, Abhyankar S, Gilliland DG. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant Proc. 1993;25(1 Pt 2):1216-1217.
  47. Yuen KY, Wong SS. Human infection by avian influenza A H5N1. Hong Kong Med J. 2005;11(3):189-199.
  48. de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med. 2006;12(10):1203-1207. https://doi.org/10.1038/nm1477
  49. Liu Q, Zhou YH, Yang ZQ. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol. 2016;13(1):3-10. https://doi.org/10.1038/cmi.2015.74
  50. Teijaro JR. Cytokine storms in infectious diseases. Semin Immunopathol. 2017;39(5):501-503. https://doi.org/10.1007/s00281-017-0640-2
  51. Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M, et al. Cytokine release syndrome. J Immunother Cancer. 2018;6(1):56. https://doi.org/10.1186/s40425-018-0343-9
  52. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383(23):2255-2273. https://doi.org/10.1056/NEJMra2026131
  53. Mangalmurti N, Hunter CA. Cytokine Storms: Understanding COVID-19. Immunity. 2020;53(1):19-25. https://doi.org/10.1016/j.immuni.2020.06.017
  54. Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020;54:62-75. https://doi.org/10.1016/j.cytogfr.2020.06.001
  55. Shimizu M. Clinical Features of Cytokine Storm Syndrome. In: Cron R, Behrens E, editors. Cytokine Storm Syndrome. Springer, Cham; 2019. p. 31-41. https://doi.org/10.1007/978-3-030-22094-5_3
  56. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect. 2020;80(6):607-613. https://doi.org/10.1016/j.jinf.2020.03.037
  57. Lu L, Zhang H, Dauphars DJ, He YW. A Potential Roleof Interleukin 10 in COVID-19 Pathogenesis. Trends Immunol. 2021;42(1):3-5. https://doi.org/10.1016/j.it.2020.10.012
  58. Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA.Pattern Recognition Receptors and the Innate ImmuneResponse to Viral Infection. Viruses. 2011;3(6):920-940. https://doi.org/10.3390/v3060920
  59. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol. 2020;11:1708. https://doi.org/10.3389/fimmu.2020.01708
  60. Buszko M, Nita-Lazar A, Park JH, Schwartzberg PL, Verthelyi D, Young HA, et al. Lessons learned: new insights on the role of cytokines in COVID-19. Nat Immunol. 2021;22(4):404-411. https://doi.org/10.1038/s41590-021-00901-9
  61. Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. COVID-19 Autopsies, Oklahoma, USA. Am J Clin Pathol. 2020;153(6):725-733. https://doi.org/10.1093/ajcp/aqaa062
  62. Santa Cruz A, Mendes-Frias A, Oliveira AI, Dias L, Matos AR, Carvalho A, et al. Interleukin-6 Is a Biomarker for the Development of Fatal Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia. Front Immunol. 2021;12:613422. https://doi.org/10.3389/fimmu.2021.613422
  63. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620-2629. https://doi.org/10.1172/JCI137244
  64. Chen L, Liu HG, Liu W, Liu J, Liu K, Shang J, et al. [Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia]. Zhonghua Jie He He Hu Xi Za Zhi. 2020 Feb 6;43(0):E005. Chinese. https://doi. org/10.3760/cma.j.issn.1001-0939.2020.0005. Epub ahead of print.
  65. Castelli V, Cimini A, Ferri C. Cytokine Storm in COVID-19: “When You Come Out of the Storm, You Won’t Be the Same Person Who Walked in”. Front Immunol. 2020;11:2132.https://doi.org/10.3389/fimmu.2020.02132
  66. Tang L, Yin Z, Hu Y, Mei H. Controlling Cytokine Storm Is Vital in COVID-19. Front Immunol. 2020;11:570993. https://doi.org/10.3389/fimmu.2020.570993
Опубліковано
2024-09-27
Як цитувати
Распутняк, О. В., Гавриленко, Т. І., Підгайна, О. А., Шнайдер, Л. М., Ломаковський, О. М., & Калашніков, С. А. (2024). Цитокіновий шторм у патогенезі ускладнень при COVID-19. Український журнал серцево-судинної хірургії, 32(3), 73-84. https://doi.org/10.30702/ujcvs/24.32(03)/RG042-7384
Розділ
ЗАГАЛЬНІ ПИТАННЯ ЛІКУВАННЯ ПАЦІЄНТІВ ІЗ СЕРЦЕВО-СУДИННОЮ ПАТОЛОГІЄЮ

Статті цього автора (авторів), які найбільше читають