Cardiovascular Complications of COVID-19: Review of Cardiac Injury Pathophysiology and Clinical Evidence

  • Olga V. Rasputniak National Amosov Institute of Cardiovascular Surgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • Tetiana I. Gavrilenko National Amosov Institute of Cardiovascular Surgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • Olena A. Pidgaina National Scientific Center “The M.D. Strazhesko Institute of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
  • Olena M. Trembovetska National Amosov Institute of Cardiovascular Surgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • Oleksandr M. Lomakovskyi National Scientific Center “The M.D. Strazhesko Institute of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
  • Liudmyla M. Shnaider National Amosov Institute of Cardiovascular Surgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
Keywords: COVID-19, heart failure, biomarkers, cytokine storm, endothelial dysfunction, coagulopathy


The coronarovirus disease 2019 (COVID-19) pandemic is still a significant cause of morbidity and mortality, with a rapidly increasing number of infections and deaths worldwide. The possibility of heart involvement in patients with COVID-19 has received great attention since the beginning of the pandemic. In the present review, we summarize the current knowledge on myocardial involvement in COVID-19, provide an overview of the incidence, pathogenetic mechanisms and clinical implications of cardiac injury in this setting.

Recent evidence suggests an interplay between COVID-19 and cardiovascular diseases. Cardiac involvement plays a key role in the management and prognostication of patients with SARS-CoV-2 infection. Heart failure is a common state that can be encountered at different stages in the course of COVID-19 patient presentation. New or existing heart failure in the setting of COVID-19 can present a set of unique challenges that can complicate presentation, management andprognosis. It is still unclear whether heart failure in COVID-19 is due to direct effect of SARS-CoV-2 on the myocardium or it is indirectly caused by hypoxia, cytokine release, volume overload, overwhelming critical illness. Careful understandingof hemodynamic and diagnostic implications is essential for appropriate triage and management of these patients. Abnormal cardiac biomarkers are common in COVID-19 and can stem from variety of mechanisms that involve the viral entry itself through angiotensin I converting enzyme 2 receptors, direct cardiac injury, increased thrombotic activity,stress cardiomyopathy etc. Data on the impact of COVID-19 in chronic heart failure patients and its potential to trigger acute heart failure are lacking. The cytokine storm observed in this pandemic can be a culpit in many of the observed mechanisms and presentations of this infection.


  1. V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155-170.
  2. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-1242.
  3. Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 2020;41(12):1100-1115.
  4. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
  5. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinicalcourse and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohortstudy. Lancet. 2020;395(10229):1054-1062.
  6. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-422.
  7. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513.
  8. Magadum A, Kishore R. Cardiovascular Manifestations of COVID-19 Infection. Cells. 2020 Nov 19;9(11):2508.
  9. Basu-Ray I, Almaddah NK, Adeboye A, Vaqar S, Soos MP. Cardiac Manifestations of Coronavirus (COVID-19). [Updated 2024 Feb 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan. Available from:
  10. Weiss P, Murdoch DR. Clinical course and mortality risk of severe COVID-19. Lancet. 2020;395(10229):1014-1015.
  11. Zeng JH, Liu YX, Yuan J, Wang FX, Wu WB, Li JX, et al. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection. 2020;48(5):773-777.
  12. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020 Apr;8(4):e21.
  13. Murthy S, Gomersall CD, Fowler RA. Care for Critically Ill Patients With COVID-19. JAMA. 2020;323(15):1499-1500.
  14. Billett HH, Reyes-Gil M, Szymanski J, Ikemura K, Stahl LR, Lo Y, et al. Anticoagulation in COVID-19: Effect of Enoxaparin, Heparin, and Apixaban on Mortality. Thromb Haemost. 2020;120(12):1691-1699.
  15. Shah MD, Sumeh AS, Sheraz M, Kavitha MS, Venmathi Maran BA, Rodrigues KF. A mini-review on the impact of COVID 19 on vital organs. Biomed Pharmacother. 2021;143:112158.
  16. Li J, Guo Z, Song X. Identifying potential biological processes and key targets in COVID-19-associated heart failure. Heliyon. 2023;9(8):e18575.
  17. Bader F, Manla Y, Atallah B, Starling RC. Heart failure and COVID-19. Heart Fail Rev. 2021;26(1):1-10.
  18. Libby P. The Heart in COVID-19: Primary Target or Secondary Bystander? JACC Basic Transl Sci. 2020;5(5):537-542.
  19. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases(COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(2):145-151. Chinese.
  20. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association ofCardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-810.
  21. Cordero A, Santos García-Gallego C, Bertomeu-González V, Fácila L, Rodríguez-Mañero M, Escribano D, et al. Mortality associated with cardiovascular disease in patients with COVID-19. Rec. Cardioclinics. 2021;56(1):30-38.
  22. Ng TM, Toews ML. Impaired norepinephrine regulation of monocyte inflammatory cytokine balance in heart failure. World J Cardiol. 2016;8(10):584-589.
  23. Kytömaa S, Hegde S, Claggett B, Udell JA, Rosamond W, Temte J, et al. Association of Influenza-like Illness Activity With Hospitalizations for Heart Failure: The Atherosclerosis Risk in Communities Study. JAMA Cardiol. 2019;4(4):363-369.
  24. Tufan A, Avanoğlu Güler A, Matucci-Cerinic M. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turk J Med Sci. 2020;50(SI-1):620-632.
  25. Hall ME, Vaduganathan M, Khan MS, Papadimitriou L, Long RC, Hernandez GA, et al. Reductions in Heart Failure Hospitalizations During the COVID-19 Pandemic. J CardFail. 2020;26(6):462-463.
  26. Mishra T, Patel DA, Awadelkarim A, Sharma A, Patel N, Yadav N, et al. A National Perspective on the Impact of the COVID-19 Pandemic on Heart Failure Hospitalizations in the United States. Curr Probl Cardiol. 2023 Sep;48(9):101749.
  27. Zanza C, Romenskaya T, Manetti AC, Franceschi F, La Russa R, Bertozzi G, et al. Cytokine Storm in COVID-19: Immunopathogenesis and Therapy. Medicina (Kaunas). 2022 Jan 18;58(2):144.
  28. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers D, Kant KM, et al. Confirmation of the highcumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb Res. 2020;191:148-150.
  29. Rey JR, Caro-Codón J, Rosillo SO, Iniesta ÁM, Castrejón-Castrejón S, Marco-Clement I, et al.; CARD-COVID Investigators. Heart failure in COVID-19 patients: prevalence, incidence and prognostic implications. Eur J Heart Fail. 2020;22(12):2205-2215.
  30. Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical Characteristics of Covid-19 in New York City. N Engl J Med. 2020;382(24):2372-2374.
  31. Montazersaheb S, Hosseiniyan Khatibi SM, Hejazi MS, Tarhriz V, Farjami A, Ghasemian Sorbeni F, et al. COVID-19 infection: an overview on cytokine storm and related interventions. Virol J. 2022;19(1):92.
  32. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al.; COVID-19 Lombardy ICU Network. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574-1581.
  33. Petrovic V, Radenkovic D, Radenkovic G, Djordjevic V, Banach M. Pathophysiology of Cardiovascular Complications in COVID-19. Front Physiol. 2020 Oct 9;11:575600.
  34. Lawal IO, Kgatle MM, Mokoala K, Farate A, Sathekge MM. Cardiovascular disturbances in COVID-19: an updated review of the pathophysiology and clinical evidence of cardiovascular damage induced by SARS-CoV-2. BMC Cardiovasc Disord. 2022 Mar 9;22(1):93.
  35. Italia L, Tomasoni D, Bisegna S, Pancaldi E, Stretti L, Adamo M, et al. COVID-19 and Heart Failure: From Epidemiology During the Pandemic to Myocardial Injury, Myocarditis, and Heart Failure Sequelae. Front Cardiovasc Med. 2021 Aug 10;8:713560.
  36. Bromage DI, Cannatà A, Rind IA, Gregorio C, Piper S, Shah AM, et al. The impact of COVID-19 on heart failure hospitalization and management: report from a Heart Failure Unit in London during the peak of the pandemic. Eur J Heart Fail. 2020;22(6):978-984.
  37. Cannatà A, Bromage DI, Rind IA, Gregorio C, Bannister C,Albarjas M, et al. Temporal trends in decompensated heart failure and outcomes during COVID-19: a multisite report from heart failure referral centres in London. Eur J Heart Fail. 2020;22(12):2219-2224.
  38. König S, Hohenstein S, Meier-Hellmann A, Kuhlen R, Hindricks G, Bollmann A; Helios Hospitals, Germany. In-hospital care in acute heart failure during the COVID-19 pandemic: insights from the German-wide Helios hospital network. Eur J Heart Fail. 2020;22(12):2190-2201.
  39. Lala A, Johnson KW, Januzzi JL, Russak AJ, Paranjpe I, Richter F, et al.; Mount Sinai COVID Informatics Center.Prevalence and Impact of Myocardial Injury in Patients Hospitalized With COVID-19 Infection. J Am Coll Cardiol.2020;76(5):533-546.
  40. Petrilli CM, Jones SA, Yang J, Rajagopalan H, O’Donnell L, Chernyak Y, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020 May 22;369:m1966.
  41. Alvarez-Garcia J, Lee S, Gupta A, Cagliostro M, Joshi AA, Rivas-Lasarte M, et al. Prognostic Impact of Prior Heart Failure in Patients Hospitalized With COVID-19. J Am Coll Cardiol. 2020;76(20):2334-2348.
  42. Tomasoni D, Inciardi RM, Lombardi CM, Tedino C, Agostoni P, Ameri P, et al. Impact of heart failure on the clinical course and outcomes of patients hospitalized for COVID-19. Results of the Cardio-COVID-Italy multicentre study. Eur J Heart Fail. 2020;22(12):2238-2247.
  43. Mangalmurti N, Hunter CA. Cytokine Storms: Understanding COVID-19. Immunity. 2020;53(1):19-25.
  44. Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020;368(6490):473-474.
  45. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811-818.
  46. De Michieli L, Jaffe AS, Sandoval Y. Use and Prognostic Implications of Cardiac Troponin in COVID-19. Heart Fail Clin. 2023;19(2):163-176.
  47. Rasmi Y, Mosa OF, Alipour S, Heidari N, Javanmard F, Golchin A, et al. Significance of Cardiac Troponins as an Identification Tool in COVID-19 Patients Using Biosensors: An Update. Front Mol Biosci. 2022 Feb 24;9:821155.
  48. Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Prog Cardiovasc Dis. 2020;63(3):390-391.
  49. Cameli M, Pastore MC, Soliman Aboumarie H, Mandoli GE, D’Ascenzi F, Cameli P, et al. Usefulness of echocardiography to detect cardiac involvement in COVID-19 patients. Echocardiography. 2020;37(8):1278-1286.
  50. Huang S, Vignon P, Mekontso-Dessap A, Tran S, Prat G, Chew M, et al.; ECHO-COVID research group. Echocardiography findings in COVID-19 patients admitted to intensive care units: a multi-national observational study (the ECHO-COVID study). Intensive Care Med. 2022;48(6):667-678.
  51. Shafiabadi Hassani N, Shojaee A, Khodaprast Z, Sepahvandi R, Shahrestanaki E, Rastad H. Echocardiographic Features of Cardiac Injury Related to COVID-19 and Their Prognostic Value: A Systematic Review. J Intensive Care Med. 2021;36(4):500-508.
  52. Burrell LM, Johnston CI, Tikellis C, Cooper ME. ACE2, a new regulator of the renin-angiotensin system. Trends Endocrinol Metab. 2004;15(4):166-169.
  53. Oudit GY, Wang K, Viveiros A, Kellner MJ, Penninger JM.Angiotensin-converting enzyme 2-at the heart of the COVID-19 pandemic. Cell. 2023;186(5):906-922.
  54. Ashraf UM, Abokor AA, Edwards JM, Waigi EW, Royfman RS, Hasan SA, et al. SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiol Genomics. 2021;53(2):51-60.
  55. Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020 Jul 13;24(1):422.
  56. Beyerstedt S, Casaro EB, Rangel ÉB. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis. 2021;40(5):905-919.
  57. Sahu S, Patil CR, Kumar S, Apparsundaram S, Goyal RK. Role of ACE2-Ang (1-7)-Mas axis in post-COVID-19 complications and its dietary modulation. Mol Cell Biochem. 2022;477(1):225-240.
  58. Xu SW, Ilyas I, Weng JP. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin. 2023;44(4):695-709.
  59. Wilhelm G, Mertowska P, Mertowski S, Przysucha A, Strużyna J, Grywalska E, et al. The Crossroads of the Coagulation System and the Immune System: Interactions and Connections. Int J Mol Sci. 2023 Aug 8;24(16):12563.
  60. Kohansal Vajari M, Shirin M, Pourbagheri-Sigaroodi A, Akbari ME, Abolghasemi H, Bashash D. COVID-19-related coagulopathy: A review of pathophysiology and pharmaceutical management. Cell Biol Int. 2021;45(9):1832-1850.
  61. Cheng NM, Chan YC, Cheng SW. COVID-19 related thrombosis: A mini-review. Phlebology. 2022;37(5):326-337.
  62. Hanff TC, Mohareb AM, Giri J, Cohen JB, Chirinos JA. Thrombosis in COVID-19. Am J Hematol. 2020;95(12):1578-1589.
  63. Knight R, Walker V, Ip S, Cooper JA, Bolton T, Keene S, et al.; CVD-COVID-UK/COVID-IMPACT Consortium and the Longitudinal Health and Wellbeing COVID-19 National Core Study. Association of COVID-19 With Major Arterial and Venous Thrombotic Diseases: A Population-Wide Cohort Study of 48 Million Adults in England and Wales. Circulation. 2022;146(12):892-906.
  64. Pak AI, Shevchuk OO, Paliy SM, Selskiy BP, Korda MM. [Endothelial dysfunction in COVID-19 (literature review)]. Ukr med chasopys. 2021;(3(143)):1-7. Ukrainian.
  65. Falasca L, Nardacci R, Colombo D, Lalle E, Di Caro A, Nicastri E, et al. Postmortem Findings in Italian Patients With COVID-19: A Descriptive Full Autopsy Study of Cases With and Without Comorbidities. J Infect Dis. 2020;222(11):1807-1815.
  66. Cooper LT, Baughman KL, Feldman AM, Frustaci A,Jessup M, Kuhl U, et al.; American Heart Association; American College of Cardiology; European Society of Cardiology; Heart Failure Society of America; Heart Failure Association of the European Society of Cardiology. The Role of Endomyocardial Biopsy in the Management of Cardiovascular Disease: A Scientific Statement From the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. J Am Coll Cardiol. 2007;50(19):1914-1931.
  67. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594(7862):259-264.
  68. Kawakami R, Sakamoto A, Kawai K, Gianatti A, Pellegrini D, Nasr A, et al. Pathological Evidence for SARS-CoV-2 as a Cause of Myocarditis: JACC Review Topic of the Week. J Am Coll Cardiol. 2021;77(3):314-325.
  69. Halushka MK, Vander Heide RS. Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations. Cardiovasc Pathol. 2021 Jan-Feb;50:107300.
  70. Lombardi CM, Carubelli V, Iorio A, Inciardi RM, Bellasi A, Canale C, et al. Association of Troponin Levels With Mortality in Italian Patients Hospitalized With Coronavirus Disease 2019: Results of a Multicenter Study. JAMA Cardiol. 2020;5(11):1274-1280.
  71. Iorio A, Lombardi CM, Specchia C, Merlo M, Nuzzi V, Ferraro I, et al. Combined Role of Troponin and Natriuretic Peptides Measurements in Patients With Covid-19 (from the Cardio-COVID-Italy Multicenter Study). Am J Cardiol. 2022;167:125-132.
  72. Gu ZC, Zhang C, Kong LC, Shen L, Li Z, Ge H, et al. Incidence of myocardial injury in coronavirus disease 2019 (COVID-19): a pooled analysis of 7,679 patients from 53 studies. Cardiovasc Diagn Ther. 2020;10(4):667-677.
  73. Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583-590.
  74. Rasputniak OV, Havrylenko TI, Rudenko KV, Ryzhkova NO, Pidhaina OA, Rybakova OV, et al. [Immunopathological reactions, endothelial dysfunction and pathological angiogenesis as independent mechanisms of maladaptive left ventricular remodeling in ischemic and nonischemic heart failure patients]. Zaporozhye medicaljournal. 2021;23(2):175-183. Ukrainian.
  75. Panhwar MS, Kalra A, Gupta T, Kolte D, Khera S, Bhatt DL, et al. Effect of Influenza on Outcomes in Patients With HeartFailure. JACC Heart Fail. 2019;7(2):112-117.
  76. Boraschi D. What Is IL-1 for? The Functions of Interleukin-1 Across Evolution. Front Immunol. 2022;13:872155.
  77. Tanaka T, Narazaki M, Kishimoto T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.
  78. Fontes JA, Rose NR, Čiháková D. The varying faces of IL-6: From cardiac protection to cardiac failure. Cytokine. 2015;74(1):62-68.
  79. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813(5):878-888.
  80. Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL, Borca MV. The Role of Interleukin 6 During Viral Infections. Front Microbiol. 2019;10:1057.
  81. Wang X, Tang G, Liu Y, Zhang L, Chen B, Han Y, et al. The role of IL-6 in coronavirus, especially in COVID-19. Front Pharmacol. 2022;13:1033674.
  82. Abbasifard M, Khorramdelazad H. The bio-mission of interleukin-6 in the pathogenesis of COVID-19: A brief look at potential therapeutic tactics. LifeSci. 2020;257:118097.
  83. Shu H, Zhao C, Wang DW. Understanding COVID-19-related myocarditis: pathophysiology, diagnosis, and treatment strategies. Cardiol Plus. 2023;8(2):72-81.
  84. Oyarzun A, Parsons S, Bassed R. Myocarditis in the forensic setting - a review of the literature. CardiovascPathol. 2023;62:107475.
How to Cite
Rasputniak, O. V., Gavrilenko, T. I., Pidgaina, O. A., Trembovetska, O. M., Lomakovskyi, O. M., & Shnaider, L. M. (2024). Cardiovascular Complications of COVID-19: Review of Cardiac Injury Pathophysiology and Clinical Evidence. Ukrainian Journal of Cardiovascular Surgery, 32(2), 92-104.

Most read articles by the same author(s)