Cardiovascular Complications of COVID-19: Review of Cardiac Injury Pathophysiology and Clinical Evidence

  • Olga V. Rasputniak National Amosov Institute of Cardiovascular Surgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0002-8716-6753
  • Tetiana I. Gavrilenko National Amosov Institute of Cardiovascular Surgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0002-1905-8240
  • Olena A. Pidgaina National Scientific Center “The M.D. Strazhesko Institute of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine https://orcid.org/0000-0003-2388-3275
  • Olena M. Trembovetska National Amosov Institute of Cardiovascular Surgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0003-3923-224X
  • Oleksandr M. Lomakovskyi National Scientific Center “The M.D. Strazhesko Institute of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine https://orcid.org/0000-0002-2490-2733
  • Liudmyla M. Shnaider National Amosov Institute of Cardiovascular Surgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine https://orcid.org/0009-0009-2512-1208
Keywords: COVID-19, heart failure, biomarkers, cytokine storm, endothelial dysfunction, coagulopathy

Abstract

The coronarovirus disease 2019 (COVID-19) pandemic is still a significant cause of morbidity and mortality, with a rapidly increasing number of infections and deaths worldwide. The possibility of heart involvement in patients with COVID-19 has received great attention since the beginning of the pandemic. In the present review, we summarize the current knowledge on myocardial involvement in COVID-19, provide an overview of the incidence, pathogenetic mechanisms and clinical implications of cardiac injury in this setting.

Recent evidence suggests an interplay between COVID-19 and cardiovascular diseases. Cardiac involvement plays a key role in the management and prognostication of patients with SARS-CoV-2 infection. Heart failure is a common state that can be encountered at different stages in the course of COVID-19 patient presentation. New or existing heart failure in the setting of COVID-19 can present a set of unique challenges that can complicate presentation, management andprognosis. It is still unclear whether heart failure in COVID-19 is due to direct effect of SARS-CoV-2 on the myocardium or it is indirectly caused by hypoxia, cytokine release, volume overload, overwhelming critical illness. Careful understandingof hemodynamic and diagnostic implications is essential for appropriate triage and management of these patients. Abnormal cardiac biomarkers are common in COVID-19 and can stem from variety of mechanisms that involve the viral entry itself through angiotensin I converting enzyme 2 receptors, direct cardiac injury, increased thrombotic activity,stress cardiomyopathy etc. Data on the impact of COVID-19 in chronic heart failure patients and its potential to trigger acute heart failure are lacking. The cytokine storm observed in this pandemic can be a culpit in many of the observed mechanisms and presentations of this infection.

References

  1. V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155-170. https://doi.org/10.1038/s41579-020-00468-6
  2. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-1242. https://doi.org/10.1001/jama.2020.2648
  3. Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 2020;41(12):1100-1115. https://doi.org/10.1016/j.it.2020.10.004
  4. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
  5. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinicalcourse and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohortstudy. Lancet. 2020;395(10229):1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3
  6. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-422. https://doi.org/10.1016/S2213-2600(20)30076-X
  7. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513. https://doi.org/10.1016/S0140-6736(20)30211-7
  8. Magadum A, Kishore R. Cardiovascular Manifestations of COVID-19 Infection. Cells. 2020 Nov 19;9(11):2508. https://doi.org/10.3390/cells9112508
  9. Basu-Ray I, Almaddah NK, Adeboye A, Vaqar S, Soos MP. Cardiac Manifestations of Coronavirus (COVID-19). [Updated 2024 Feb 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK556152/
  10. Weiss P, Murdoch DR. Clinical course and mortality risk of severe COVID-19. Lancet. 2020;395(10229):1014-1015. https://doi.org/10.1016/S0140-6736(20)30633-4
  11. Zeng JH, Liu YX, Yuan J, Wang FX, Wu WB, Li JX, et al. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection. 2020;48(5):773-777. https://doi.org/10.1007/s15010-020-01424-5
  12. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020 Apr;8(4):e21. https://doi.org/10.1016/S2213-2600(20)30116-8
  13. Murthy S, Gomersall CD, Fowler RA. Care for Critically Ill Patients With COVID-19. JAMA. 2020;323(15):1499-1500. https://doi.org/10.1001/jama.2020.3633
  14. Billett HH, Reyes-Gil M, Szymanski J, Ikemura K, Stahl LR, Lo Y, et al. Anticoagulation in COVID-19: Effect of Enoxaparin, Heparin, and Apixaban on Mortality. Thromb Haemost. 2020;120(12):1691-1699. https://doi.org/10.1055/s-0040-1720978
  15. Shah MD, Sumeh AS, Sheraz M, Kavitha MS, Venmathi Maran BA, Rodrigues KF. A mini-review on the impact of COVID 19 on vital organs. Biomed Pharmacother. 2021;143:112158. https://doi.org/10.1016/j.biopha.2021.112158
  16. Li J, Guo Z, Song X. Identifying potential biological processes and key targets in COVID-19-associated heart failure. Heliyon. 2023;9(8):e18575. https://doi.org/10.1016/j.heliyon.2023.e18575
  17. Bader F, Manla Y, Atallah B, Starling RC. Heart failure and COVID-19. Heart Fail Rev. 2021;26(1):1-10. https://doi.org/10.1007/s10741-020-10008-2
  18. Libby P. The Heart in COVID-19: Primary Target or Secondary Bystander? JACC Basic Transl Sci. 2020;5(5):537-542. https://doi.org/10.1016/j.jacbts.2020.04.001
  19. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases(COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(2):145-151. Chinese. https://doi.org/10.3760/cma.j.issn.0254-6450.2020.02.003
  20. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association ofCardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-810. https://doi.org/10.1001/jamacardio.2020.0950
  21. Cordero A, Santos García-Gallego C, Bertomeu-González V, Fácila L, Rodríguez-Mañero M, Escribano D, et al. Mortality associated with cardiovascular disease in patients with COVID-19. Rec. Cardioclinics. 2021;56(1):30-38. https://doi.org/10.1016/j.rccl.2020.10.005
  22. Ng TM, Toews ML. Impaired norepinephrine regulation of monocyte inflammatory cytokine balance in heart failure. World J Cardiol. 2016;8(10):584-589. https://doi.org/10.4330/wjc.v8.i10.584
  23. Kytömaa S, Hegde S, Claggett B, Udell JA, Rosamond W, Temte J, et al. Association of Influenza-like Illness Activity With Hospitalizations for Heart Failure: The Atherosclerosis Risk in Communities Study. JAMA Cardiol. 2019;4(4):363-369. https://doi.org/10.1001/jamacardio.2019.0549
  24. Tufan A, Avanoğlu Güler A, Matucci-Cerinic M. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turk J Med Sci. 2020;50(SI-1):620-632. https://doi.org/10.3906/sag-2004-168
  25. Hall ME, Vaduganathan M, Khan MS, Papadimitriou L, Long RC, Hernandez GA, et al. Reductions in Heart Failure Hospitalizations During the COVID-19 Pandemic. J CardFail. 2020;26(6):462-463. https://doi.org/10.1016/j.cardfail.2020.05.005
  26. Mishra T, Patel DA, Awadelkarim A, Sharma A, Patel N, Yadav N, et al. A National Perspective on the Impact of the COVID-19 Pandemic on Heart Failure Hospitalizations in the United States. Curr Probl Cardiol. 2023 Sep;48(9):101749. https://doi.org/10.1016/j.cpcardiol.2023.101749
  27. Zanza C, Romenskaya T, Manetti AC, Franceschi F, La Russa R, Bertozzi G, et al. Cytokine Storm in COVID-19: Immunopathogenesis and Therapy. Medicina (Kaunas). 2022 Jan 18;58(2):144. https://doi.org/10.3390/medicina58020144
  28. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers D, Kant KM, et al. Confirmation of the highcumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb Res. 2020;191:148-150. https://doi.org/10.1016/j.thromres.2020.04.041
  29. Rey JR, Caro-Codón J, Rosillo SO, Iniesta ÁM, Castrejón-Castrejón S, Marco-Clement I, et al.; CARD-COVID Investigators. Heart failure in COVID-19 patients: prevalence, incidence and prognostic implications. Eur J Heart Fail. 2020;22(12):2205-2215. https://doi.org/10.1002/ejhf.1990
  30. Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical Characteristics of Covid-19 in New York City. N Engl J Med. 2020;382(24):2372-2374. https://doi.org/10.1056/NEJMc2010419
  31. Montazersaheb S, Hosseiniyan Khatibi SM, Hejazi MS, Tarhriz V, Farjami A, Ghasemian Sorbeni F, et al. COVID-19 infection: an overview on cytokine storm and related interventions. Virol J. 2022;19(1):92. https://doi.org/10.1186/s12985-022-01814-1
  32. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al.; COVID-19 Lombardy ICU Network. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574-1581. https://doi.org/10.1001/jama.2020.5394
  33. Petrovic V, Radenkovic D, Radenkovic G, Djordjevic V, Banach M. Pathophysiology of Cardiovascular Complications in COVID-19. Front Physiol. 2020 Oct 9;11:575600. https://doi.org/10.3389/fphys.2020.575600
  34. Lawal IO, Kgatle MM, Mokoala K, Farate A, Sathekge MM. Cardiovascular disturbances in COVID-19: an updated review of the pathophysiology and clinical evidence of cardiovascular damage induced by SARS-CoV-2. BMC Cardiovasc Disord. 2022 Mar 9;22(1):93. https://doi.org/10.1186/s12872-022-02534-8
  35. Italia L, Tomasoni D, Bisegna S, Pancaldi E, Stretti L, Adamo M, et al. COVID-19 and Heart Failure: From Epidemiology During the Pandemic to Myocardial Injury, Myocarditis, and Heart Failure Sequelae. Front Cardiovasc Med. 2021 Aug 10;8:713560. https://doi.org/10.3389/fcvm.2021.713560
  36. Bromage DI, Cannatà A, Rind IA, Gregorio C, Piper S, Shah AM, et al. The impact of COVID-19 on heart failure hospitalization and management: report from a Heart Failure Unit in London during the peak of the pandemic. Eur J Heart Fail. 2020;22(6):978-984. https://doi.org/10.1002/ejhf.1925
  37. Cannatà A, Bromage DI, Rind IA, Gregorio C, Bannister C,Albarjas M, et al. Temporal trends in decompensated heart failure and outcomes during COVID-19: a multisite report from heart failure referral centres in London. Eur J Heart Fail. 2020;22(12):2219-2224. https://doi.org/10.1002/ejhf.1986
  38. König S, Hohenstein S, Meier-Hellmann A, Kuhlen R, Hindricks G, Bollmann A; Helios Hospitals, Germany. In-hospital care in acute heart failure during the COVID-19 pandemic: insights from the German-wide Helios hospital network. Eur J Heart Fail. 2020;22(12):2190-2201. https://doi.org/10.1002/ejhf.2044
  39. Lala A, Johnson KW, Januzzi JL, Russak AJ, Paranjpe I, Richter F, et al.; Mount Sinai COVID Informatics Center.Prevalence and Impact of Myocardial Injury in Patients Hospitalized With COVID-19 Infection. J Am Coll Cardiol.2020;76(5):533-546. https://doi.org/10.1016/j.jacc.2020.06.007
  40. Petrilli CM, Jones SA, Yang J, Rajagopalan H, O’Donnell L, Chernyak Y, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020 May 22;369:m1966. https://doi.org/10.1136/bmj.m1966
  41. Alvarez-Garcia J, Lee S, Gupta A, Cagliostro M, Joshi AA, Rivas-Lasarte M, et al. Prognostic Impact of Prior Heart Failure in Patients Hospitalized With COVID-19. J Am Coll Cardiol. 2020;76(20):2334-2348. https://doi.org/10.1016/j.jacc.2020.09.549
  42. Tomasoni D, Inciardi RM, Lombardi CM, Tedino C, Agostoni P, Ameri P, et al. Impact of heart failure on the clinical course and outcomes of patients hospitalized for COVID-19. Results of the Cardio-COVID-Italy multicentre study. Eur J Heart Fail. 2020;22(12):2238-2247. https://doi.org/10.1002/ejhf.2052
  43. Mangalmurti N, Hunter CA. Cytokine Storms: Understanding COVID-19. Immunity. 2020;53(1):19-25. https://doi.org/10.1016/j.immuni.2020.06.017
  44. Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020;368(6490):473-474. https://doi.org/10.1126/science.abb8925
  45. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811-818. https://doi.org/10.1001/jamacardio.2020.1017
  46. De Michieli L, Jaffe AS, Sandoval Y. Use and Prognostic Implications of Cardiac Troponin in COVID-19. Heart Fail Clin. 2023;19(2):163-176. https://doi.org/10.1016/j.hfc.2022.08.005
  47. Rasmi Y, Mosa OF, Alipour S, Heidari N, Javanmard F, Golchin A, et al. Significance of Cardiac Troponins as an Identification Tool in COVID-19 Patients Using Biosensors: An Update. Front Mol Biosci. 2022 Feb 24;9:821155. https://doi.org/10.3389/fmolb.2022.821155
  48. Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Prog Cardiovasc Dis. 2020;63(3):390-391. https://doi.org/10.1016/j.pcad.2020.03.001
  49. Cameli M, Pastore MC, Soliman Aboumarie H, Mandoli GE, D’Ascenzi F, Cameli P, et al. Usefulness of echocardiography to detect cardiac involvement in COVID-19 patients. Echocardiography. 2020;37(8):1278-1286. https://doi.org/10.1111/echo.14779
  50. Huang S, Vignon P, Mekontso-Dessap A, Tran S, Prat G, Chew M, et al.; ECHO-COVID research group. Echocardiography findings in COVID-19 patients admitted to intensive care units: a multi-national observational study (the ECHO-COVID study). Intensive Care Med. 2022;48(6):667-678. https://doi.org/10.1007/s00134-022-06685-2
  51. Shafiabadi Hassani N, Shojaee A, Khodaprast Z, Sepahvandi R, Shahrestanaki E, Rastad H. Echocardiographic Features of Cardiac Injury Related to COVID-19 and Their Prognostic Value: A Systematic Review. J Intensive Care Med. 2021;36(4):500-508. https://doi.org/10.1177/0885066620981015
  52. Burrell LM, Johnston CI, Tikellis C, Cooper ME. ACE2, a new regulator of the renin-angiotensin system. Trends Endocrinol Metab. 2004;15(4):166-169. https://doi.org/10.1016/j.tem.2004.03.001
  53. Oudit GY, Wang K, Viveiros A, Kellner MJ, Penninger JM.Angiotensin-converting enzyme 2-at the heart of the COVID-19 pandemic. Cell. 2023;186(5):906-922. https://doi.org/10.1016/j.cell.2023.01.039
  54. Ashraf UM, Abokor AA, Edwards JM, Waigi EW, Royfman RS, Hasan SA, et al. SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiol Genomics. 2021;53(2):51-60. https://doi.org/10.1152/physiolgenomics.00087.2020
  55. Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020 Jul 13;24(1):422. https://doi.org/10.1186/s13054-020-03120-0
  56. Beyerstedt S, Casaro EB, Rangel ÉB. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis. 2021;40(5):905-919. https://doi.org/10.1007/s10096-020-04138-6
  57. Sahu S, Patil CR, Kumar S, Apparsundaram S, Goyal RK. Role of ACE2-Ang (1-7)-Mas axis in post-COVID-19 complications and its dietary modulation. Mol Cell Biochem. 2022;477(1):225-240. https://doi.org/10.1007/s11010-021-04275-2
  58. Xu SW, Ilyas I, Weng JP. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin. 2023;44(4):695-709. https://doi.org/10.1038/s41401-022-00998-0
  59. Wilhelm G, Mertowska P, Mertowski S, Przysucha A, Strużyna J, Grywalska E, et al. The Crossroads of the Coagulation System and the Immune System: Interactions and Connections. Int J Mol Sci. 2023 Aug 8;24(16):12563. https://doi.org/10.3390/ijms241612563
  60. Kohansal Vajari M, Shirin M, Pourbagheri-Sigaroodi A, Akbari ME, Abolghasemi H, Bashash D. COVID-19-related coagulopathy: A review of pathophysiology and pharmaceutical management. Cell Biol Int. 2021;45(9):1832-1850. https://doi.org/10.1002/cbin.11623
  61. Cheng NM, Chan YC, Cheng SW. COVID-19 related thrombosis: A mini-review. Phlebology. 2022;37(5):326-337. https://doi.org/10.1177/02683555211052170
  62. Hanff TC, Mohareb AM, Giri J, Cohen JB, Chirinos JA. Thrombosis in COVID-19. Am J Hematol. 2020;95(12):1578-1589. https://doi.org/10.1002/ajh.25982
  63. Knight R, Walker V, Ip S, Cooper JA, Bolton T, Keene S, et al.; CVD-COVID-UK/COVID-IMPACT Consortium and the Longitudinal Health and Wellbeing COVID-19 National Core Study. Association of COVID-19 With Major Arterial and Venous Thrombotic Diseases: A Population-Wide Cohort Study of 48 Million Adults in England and Wales. Circulation. 2022;146(12):892-906. https://doi.org/10.1161/CIRCULATIONAHA.122.060785
  64. Pak AI, Shevchuk OO, Paliy SM, Selskiy BP, Korda MM. [Endothelial dysfunction in COVID-19 (literature review)]. Ukr med chasopys. 2021;(3(143)):1-7. Ukrainian. https://doi.org/10.32471/umj.1680-3051.143.208852
  65. Falasca L, Nardacci R, Colombo D, Lalle E, Di Caro A, Nicastri E, et al. Postmortem Findings in Italian Patients With COVID-19: A Descriptive Full Autopsy Study of Cases With and Without Comorbidities. J Infect Dis. 2020;222(11):1807-1815. https://doi.org/10.1093/infdis/jiaa578
  66. Cooper LT, Baughman KL, Feldman AM, Frustaci A,Jessup M, Kuhl U, et al.; American Heart Association; American College of Cardiology; European Society of Cardiology; Heart Failure Society of America; Heart Failure Association of the European Society of Cardiology. The Role of Endomyocardial Biopsy in the Management of Cardiovascular Disease: A Scientific Statement From the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. J Am Coll Cardiol. 2007;50(19):1914-1931. https://doi.org/10.1016/j.jacc.2007.09.008
  67. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594(7862):259-264. https://doi.org/10.1038/s41586-021-03553-9
  68. Kawakami R, Sakamoto A, Kawai K, Gianatti A, Pellegrini D, Nasr A, et al. Pathological Evidence for SARS-CoV-2 as a Cause of Myocarditis: JACC Review Topic of the Week. J Am Coll Cardiol. 2021;77(3):314-325. https://doi.org/10.1016/j.jacc.2020.11.031
  69. Halushka MK, Vander Heide RS. Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations. Cardiovasc Pathol. 2021 Jan-Feb;50:107300. https://doi.org/10.1016/j.carpath.2020.107300
  70. Lombardi CM, Carubelli V, Iorio A, Inciardi RM, Bellasi A, Canale C, et al. Association of Troponin Levels With Mortality in Italian Patients Hospitalized With Coronavirus Disease 2019: Results of a Multicenter Study. JAMA Cardiol. 2020;5(11):1274-1280. https://doi.org/10.1001/jamacardio.2020.3538
  71. Iorio A, Lombardi CM, Specchia C, Merlo M, Nuzzi V, Ferraro I, et al. Combined Role of Troponin and Natriuretic Peptides Measurements in Patients With Covid-19 (from the Cardio-COVID-Italy Multicenter Study). Am J Cardiol. 2022;167:125-132. https://doi.org/10.1016/j.amjcard.2021.11.054
  72. Gu ZC, Zhang C, Kong LC, Shen L, Li Z, Ge H, et al. Incidence of myocardial injury in coronavirus disease 2019 (COVID-19): a pooled analysis of 7,679 patients from 53 studies. Cardiovasc Diagn Ther. 2020;10(4):667-677. https://doi.org/10.21037/cdt-20-535
  73. Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583-590. https://doi.org/10.1038/s41591-022-01689-3
  74. Rasputniak OV, Havrylenko TI, Rudenko KV, Ryzhkova NO, Pidhaina OA, Rybakova OV, et al. [Immunopathological reactions, endothelial dysfunction and pathological angiogenesis as independent mechanisms of maladaptive left ventricular remodeling in ischemic and nonischemic heart failure patients]. Zaporozhye medicaljournal. 2021;23(2):175-183. Ukrainian. https://doi.org/10.14739/2310-1210.2021.2.211951
  75. Panhwar MS, Kalra A, Gupta T, Kolte D, Khera S, Bhatt DL, et al. Effect of Influenza on Outcomes in Patients With HeartFailure. JACC Heart Fail. 2019;7(2):112-117. https://doi.org/10.1016/j.jchf.2018.10.011
  76. Boraschi D. What Is IL-1 for? The Functions of Interleukin-1 Across Evolution. Front Immunol. 2022;13:872155. https://doi.org/10.3389/fimmu.2022.872155
  77. Tanaka T, Narazaki M, Kishimoto T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295. https://doi.org/10.1101/cshperspect.a016295
  78. Fontes JA, Rose NR, Čiháková D. The varying faces of IL-6: From cardiac protection to cardiac failure. Cytokine. 2015;74(1):62-68. https://doi.org/10.1016/j.cyto.2014.12.024
  79. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813(5):878-888. https://doi.org/10.1016/j.bbamcr.2011.01.034
  80. Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL, Borca MV. The Role of Interleukin 6 During Viral Infections. Front Microbiol. 2019;10:1057. https://doi.org/10.3389/fmicb.2019.01057
  81. Wang X, Tang G, Liu Y, Zhang L, Chen B, Han Y, et al. The role of IL-6 in coronavirus, especially in COVID-19. Front Pharmacol. 2022;13:1033674. https://doi.org/10.3389/fphar.2022.1033674
  82. Abbasifard M, Khorramdelazad H. The bio-mission of interleukin-6 in the pathogenesis of COVID-19: A brief look at potential therapeutic tactics. LifeSci. 2020;257:118097. https://doi.org/10.1016/j.lfs.2020.118097
  83. Shu H, Zhao C, Wang DW. Understanding COVID-19-related myocarditis: pathophysiology, diagnosis, and treatment strategies. Cardiol Plus. 2023;8(2):72-81. https://doi.org/10.1097/CP9.0000000000000046
  84. Oyarzun A, Parsons S, Bassed R. Myocarditis in the forensic setting - a review of the literature. CardiovascPathol. 2023;62:107475. https://doi.org/10.1016/j.carpath.2022.107475
Published
2024-06-27
How to Cite
1.
Rasputniak OV, Gavrilenko TI, Pidgaina OA, Trembovetska OM, Lomakovskyi OM, Shnaider LM. Cardiovascular Complications of COVID-19: Review of Cardiac Injury Pathophysiology and Clinical Evidence. ujcvs [Internet]. 2024Jun.27 [cited 2025Jan.21];32(2):92-104. Available from: https://cvs.org.ua/index.php/ujcvs/article/view/653
Section
MYOCARDIAL PATHOLOGY AND HEART FAILURE

Most read articles by the same author(s)