The Impact of COVID-19 upon Intracardiac Hemodynamics and Heart Rate Variability in Stable Coronary Artery Disease Patients

Keywords: SARS-CoV-2 infection, COVID-19, myocardium, QT interval

Abstract

The aim. To study the impact of COVID-19 upon intracardiac hemodynamics and heart rate variability (HRV) in stable coronary artery disease (SCAD) patients.

Materials and methods. In this cross-sectional study we analyzed clinical and instrumental data obtained from a sample of 80 patients. The patients were divided into three groups: group 1 included patients with SCAD without COVID-19 (n=30), group 2 included patients with SCAD and COVID-19 (n=25), and group 3 included patients with COVID-19 without SCAD (n=25). The control group included 30 relatively healthy volunteers.

Results. The changes in intracardiac hemodynamics and HRV in group 2 were characterized by the impaired left ventricular systolic and diastolic function, dilation of both ventricles and elevated systolic pulmonary artery pressure. Left ventricular end-diastolic volume was higher in group 2 (205±21 ml) than that in group 1 (176±33 ml; р<0.001) and group 3 (130±21 ml; р<0.001). Patients in the groups 1–3, compared to controls, presented with the decrease in the overall HRV (by standard deviation [SD] of all NN intervals [SDNN]; SD of the averages of NN intervals in all 5 min segments of the entire recording; and mean of the SDs of all NN intervals for all 5 min segments of the entire recording) and parasympathetic activity (root-mean-square difference of successive NN intervals; the proportion derived by dividing the number of interval differences of successive NN intervals greater than 50 ms [NN50] by the total number of NN intervals [pNN50], and high frequency spectral component), along with QT interval prolongation and increase in its variability. Group 2 demonstrated the most advanced changes in HRV (by SDNN and pNN50) and both QT interval characteristics.

Conclusions. The patients with SCAD and concomitant COVID-19, along with both ventricles dilation and intracardiac hemodynamics impairment, presented with the sings of autonomic dysfunction, QT interval prolongation and increase in its variability. The heart rate variability and QT interval characteristics should be additionally considered in the management of such patients.

References

  1. Vosko I, Zirlik A, Bugger H. Impact of COVID-19 on Cardiovascular Disease. Viruses. 2023;15(2):508. https://doi.org/10.3390/v15020508
  2. Task Force for the management of COVID-19 of the European Society of Cardiology; Baigent C, Windecker S, Andreini D, Arbelo E, Barbato E, Bartorelli AL, et al. European Society of Cardiology guidance for the diagnosis and management of cardiovascular disease during the COVID-19 pandemic: part 1-epidemiology, pathophysiology, and diagnosis. Cardiovasc Res. 2022;118(6):1385-412. https://doi.org/10.1093/cvr/cvab342
  3. Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation. 2023;147(8):e93-e621. Epub 2023 Jan 25. https://doi.org/10.1161/CIR.0000000000001123. Erratum in: Circulation. 2023;147(8):e622.
  4. Fox DK, Waken RJ, Johnson DY, Hammond G, Yu J, Fanous E, et al. Impact of the COVID-19 Pandemic on Patients Without COVID-19 With Acute Myocardial Infarction and Heart Failure. J Am Heart Assoc. 2022;11(6):e022625. https://doi.org/10.1161/JAHA.121.022625
  5. Ghasemzadeh N, Kim N, Amlani S, Madan M, Shavadia JS, Chong AY, et al. A Review of ST-Elevation Myocardial Infarction in Patients with COVID-19. Cardiol Clin. 2022;40(3):321-328. https://doi.org/10.1016/j.ccl.2022.03.007
  6. Alharbi A, Franz A, Alfatlawi H, Wazzan M, Alsughayer A, Eltahawy E, et al. Impact of COVID-19 Pandemic on the Outcomes of Acute Coronary Syndrome. Curr Probl Cardiol. 2023;48(4):101575. Epub 2022 Dec 27. https://doi.org/10.1016/j.cpcardiol.2022.101575
  7. Fedorowski A, Sutton R. Autonomic dysfunction and postural orthostatic tachycardia syndrome in post-acute COVID-19 syndrome. Nat Rev Cardiol. 2023 Feb 2:1-2. Epub ahead of print. https://doi.org/10.1038/s41569-023-00842-w
  8. Reis Carneiro D, Rocha I, Habek M, Helbok R, Sellner J, Struhal W, et al. Clinical presentation and management strategies of cardiovascular autonomic dysfunction following a COVID-19 infection - A systematic review. Eur J Neurol. 2023 Jan 24. Epub ahead of print. https://doi.org/10.1111/ene.15714
  9. Shrestha AB, Mehta A, Pokharel P, Mishra A, Adhikari L, Shrestha S, et al. Long COVID Syndrome and Cardiovascular Manifestations: A Systematic Review and Meta-Analysis. Diagnostics (Basel). 2023;13(3):491. https://doi.org/10.3390/diagnostics13030491
  10. Jammoul M, Naddour J, Madi A, Reslan MA, Hatoum F, Zeineddine J, et al. Investigating the possible mechanisms of autonomic dysfunction post-COVID-19. Auton Neurosci. 2023 Mar;245:103071. Epub 2022 Dec 24. https://doi.org/10.1016/j.autneu.2022.103071
  11. Allendes FJ, Díaz HS, Ortiz FC, Marcus NJ, Quintanilla R, Inestrosa NC, et al. Cardiovascular and autonomic dysfunction in long-COVID syndrome and the potential role of non-invasive therapeutic strategies on cardiovascular outcomes. Front Med (Lausanne). 2023 Jan 19;9:1095249. https://doi.org/10.3389/fmed.2022.1095249
  12. Mohammad KO, Lin A, Rodriguez JBC. Cardiac Manifestations of Post-Acute COVID-19 Infection. Curr Cardiol Rep. 2022;24(12):1775-83. https://doi.org/10.1007/s11886-022-01793-3
  13. Fang SC, Wu YL, Tsai PS. Heart Rate Variability and Risk of All-Cause Death and Cardiovascular Events in Patients With Cardiovascular Disease: A Meta-Analysis of Cohort Studies. Biol Res Nurs. 2020;22(1):45-56. https://doi.org/10.1177/1099800419877442. Erratum in: Biol Res Nurs. 2020;22(3):423-5.
  14. Grégoire JM, Gilon C, Carlier S, Bersini H. Autonomic nervous system assessment using heart rate variability. Acta Cardiol. 2023 Feb 21:1-15. Epub ahead of print. https://doi.org/10.1080/00015385.2023.2177371
  15. Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, et al. CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV). Radiology. 2020;295(1):202-7. https://doi.org/10.1148/radiol.2020200230
  16. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al.; ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407-77. https://doi.org/10.1093/eurheartj/ehz425. Erratum in: Eur Heart J. 2020 Nov 21;41(44):4242.
  17. Pellikka PA, Arruda-Olson A, Chaudhry FA, Chen MH, Marshall JE, Porter TR, et al. Guidelines for Performance, Interpretation, and Application of Stress Echocardiography in Ischemic Heart Disease: From the American Society of Echocardiography. J Am Soc Echocardiogr. 2020;33(1):1-41.e8. https://doi.org/10.1016/j.echo.2019.07.001
  18. Bastiaenen R, Batchvarov V, Gallagher MM. Ventricular automaticity as a predictor of sudden death in ischaemic heart disease. Europace. 2012;14(6):795-803. https://doi.org/10.1093/europace/eur342
  19. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93(5):1043-65.
  20. Zharinov OJ, Chernyaha-Royko UP. [The investigation of heart rate variability: will new guidelines appear?]. Ukr J Cardiol. 2007 Jul;6:97-102. Ukrainian.
  21. Baumert M, Porta A, Vos MA, Malik M, Couderc JP, Laguna P, et al. QT interval variability in body surface ECG: measurement, physiological basis, and clinical value: position statement and consensus guidance endorsed by the European Heart Rhythm Association jointly with the ESC Working Group on Cardiac Cellular Electrophysiology. Europace. 2016;18(6):925-44. https://doi.org/10.1093/europace/euv405
  22. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003
  23. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277-314. https://doi.org/10.1016/j.echo.2016.01.011
  24. Khalangot M, Gurianov V, Kovtun V, Okhrimenko N, Kravchenko V, Tronko M. Prevalence of Type 1 Diabetes Correlates with Daily Insulin Dose, Adverse Outcomes and with Autoimmune Process Against Glutamic Acid Decarboxylase in Adults. In: Liu CP, editor. Type 1 Diabetes - Complications, Pathogenesis, and Alternative Treatments. [place unknown]: IntechOpen; 2011 [cited 2022 Dec 20]. Available from: https://www.intechopen.com/chapters/24085. https://doi.org/10.5772/20607
  25. Varney JA, Dong VS, Tsao T, Sabir MS, Rivera AT, Ghula S, et al. COVID-19 and arrhythmia: An overview. J Cardiol. 2022;79(4):468-75. https://doi.org/10.1016/j.jjcc.2021.11.019
  26. Aliani C, Rossi E, Luchini M, Calamai I, Deodati R, Spina R, et al. Cardiovascular Dynamics in COVID-19: A Heart Rate Variability Investigation. Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2278-81. https://doi.org/10.1109/EMBC48229.2022.9871265
  27. Kwon CY. The Impact of SARS-CoV-2 Infection on Heart Rate Variability: A Systematic Review of Observational Studies with Control Groups. Int J Environ Res Public Health. 2023 Jan 4;20(2):909. https://doi.org/10.3390/ijerph20020909
  28. Kaliyaperumal D, Rk K, Alagesan M, Ramalingam S. Characterization of cardiac autonomic function in COVID-19 using heart rate variability: a hospital based preliminary observational study. J Basic Clin Physiol Pharmacol. 2021;32(3):247-53. https://doi.org/10.1515/jbcpp-2020-0378
  29. Qu Z, Weiss JN. Cardiac Alternans: From Bedside to Bench and Back. Circ Res. 2023;132(1):127-49. https://doi.org/10.1161/CIRCRESAHA.122.321668
  30. Minguito-Carazo C, Echarte-Morales J, Benito-González T, Del Castillo-García S, Rodríguez-Santamarta M, Sánchez-Muñoz E, et al. QT Interval Monitoring with Handheld Heart Rhythm ECG Device in COVID-19 Patients. Glob Heart. 2021;16(1):42. https://doi.org/10.5334/gh.916
  31. Esmel-Vilomara R, Dolader P, Sabaté-Rotes A, Soriano- Arandes A, Gran F, Rosés-Noguer F. QTc interval prolongation in patients infected with SARS-CoV-2 and treated with antiviral drugs. An Pediatr (Engl Ed). 2022;96(3):213-20. https://doi.org/10.1016/j.anpede.2021.04.006
  32. Oikonomou E, Lampsas S, Theofilis P, Souvaliotis N, Papamikroulis GA, Katsarou O, et al. Impaired left ventricular deformation and ventricular-arterial coupling in post-COVID-19: association with autonomic dysregulation. Heart Vessels. 2023 Mar;38(3):381-93. Epub 2022 Sep 28. https://doi.org/10.1007/s00380-022-02180-2
  33. Farshidfar F, Koleini N, Ardehali H. Cardiovascular complicationsofCOVID-19.JCIInsight.2021;6(13):e148980. https://doi.org/10.1172/jci.insight.148980
  34. Changal K, Paternite D, Mack S, Veria S, Bashir R, Patel M, et al. Coronavirus disease 2019 (COVID-19) and QTc prolongation. BMC Cardiovasc Disord. 2021;21(1):158. https://doi.org/10.1186/s12872-021-01963-1
  35. Cozzolino D, Romano C, Nevola R, Marrone A, Umano GR, Cuomo G, et al. COVID-19 and arrhythmia: The factors associated and the role of myocardial electrical impulse propagation. An observational study based on cardiac telemetric monitoring. Front Cardiovasc Med. 2022;9:912474. https://doi.org/10.3389/fcvm.2022.912474
  36. Banai A, Szekely Y, Lupu L, Borohovitz A, Levi E, Ghantous E, et al. QT Interval Prolongation Is a Novel Predictor of 1-Year Mortality in Patients With COVID-19 Infection. Front Cardiovasc Med. 2022;9:869089. https://doi.org/10.3389/fcvm.2022.869089
  37. Mahmoudi E, Mollazadeh R, Mansouri P, Keykhaei M, Mirshafiee S, Hedayat B, et al. Ventricular repolarization heterogeneity in patients with COVID-19: Original data, systematic review, and meta-analysis. Clin Cardiol. 2022;45(1):110-8. https://doi.org/10.1002/clc.23767
  38. Kurtoğlu E, Afsin A, Aktaş İ, Aktürk E, Kutlusoy E, Çağaşar Ö. Altered cardiac autonomic function after recovery from COVID-19. Ann Noninvasive Electrocardiol. 2022;27(1):e12916. https://doi.org/10.1111/anec.12916
  39. Barrantes FJ. Central Nervous System Targets and Routes for SARS-CoV-2: Current Views and New Hypotheses. ACS Chem Neurosci. 2020;11(18):2793-803. https://doi.org/10.1021/acschemneuro.0c00434
  40. Verma K, Amitabh, Prasad DN, Kumar B, Kohli E. Brain and COVID-19 Crosstalk: Pathophysiological and Psychological Manifestations. ACS Chem Neurosci. 2020;11(20):3194-203. https://doi.org/10.1021/acschemneuro.0c00446
  41. Singh S, Meher N, Mohammed A, Razab MKAA, Bhaskar LVKS, Nawi NM. Neurological infection and complications of SARS-CoV-2: A review. Medicine (Baltimore). 2023 Feb 3;102(5):e30284. https://doi.org/10.1097/MD.0000000000030284
  42. Rabaan AA, Smajlović S, Tombuloglu H, Ćordić S, Hajdarević A, Kudić N, et al. SARS-CoV-2 infection and multi-organ system damage: A review. Biomol Biomed. 2023 Feb 1;23(1):37-52. https://doi.org/10.17305/bjbms.2022.7762
  43. Alqahtani MS, Abbas M, Alshahrani MY, Alabdullh K, Alqarni A, Alqahtani FF, et al. Effects of COVID-19 on Synaptic and Neuronal Degeneration. Brain Sci. 2023 Jan 12;13(1):131. https://doi.org/10.3390/brainsci13010131
  44. Lundstrom K, Hromić-Jahjefendić A, Bilajac E, Aljabali AAA, Baralić K, Sabri NA, et al. COVID-19 signalome: Pathways for SARS-CoV-2 infection and impact on COVID-19 associated comorbidity. Cell Signal. 2023 Jan;101:110495. https://doi.org/10.1016/j.cellsig.2022.110495
Published
2023-03-27
How to Cite
Netiazhenko, V. Z., Mostovyi, S. E., & Safonova, O. M. (2023). The Impact of COVID-19 upon Intracardiac Hemodynamics and Heart Rate Variability in Stable Coronary Artery Disease Patients. Ukrainian Journal of Cardiovascular Surgery, 31(1), 19-28. https://doi.org/10.30702/ujcvs/23.31(01)/NM009-1928