Comparative study of four aortic allograft decellularization techniques
Abstract
Objective: to assess four aortic allograft decellularization techniques.
Materials and methods. 40 aortic allografts were decellularized using 4 techniques (n=10 in each group), depending on reagents used: 1) 1% deoxycholic acid; 2) 0,5% sodium deoxycholate, 0,5% sodium dodecylsulfate; 3) 1% sodium deoxy-cholate, 1% Triton X-100; 4) 3% Triton X-100, 0.04% EDTA. On decellularization completion, specimens were subjected to histologic (hematoxylin and eosin) and histochemic (MSB, orcein) studies; residual DNA content was assessed, as well as mechanical testing.
Results and discussion. Decellularization with 0.5% sodium deoxycholate, 0.5% sodium dodecylsulfate resulted in com-plete cell removal with good preservation of connective tissue matrix. Statistically significant reduction of DNA content in aorta (31,05 vs 2,58 ng/mg, p<0,01) and aortic valve leaflet (39,7 vs 1,36 ng/mg, p<0,05) was revealed. According to mechanical testing results, there were no significant differences between fresh, cryopreserved and decellularized allografts.
Conclusions. Complete allograft decellularization was achieved using 0.5% sodium deoxycholate, 0.5% sodium dodecy-lsulfate, with statistically significant DNA reduction and without affecting mechanical properties of the valve.
References
2. Duran C., Gunning A. J. Aortic homograft valve transplantation // Ann R Coll Surg Engl. – 1966. – Vol. 39 (2). – P. 190–2.
3. Murray G. Homologous aortic-valve-segment transplants as surgical treatment for aortic and mitral insufficiency // Angiology. – 1956. – Vol. 7 (5). – P. 466–71.
4. Ross D. N. Homograft replacement of the aortic valve // Lancet. – 1962. – Vol. 2. – P. 487.
5. Barratt-Boyes B. Homograft aortic valve replacement in aortic incompetence and stenosis // Thorax. – 1964. – Vol. 19. – P. 131–50.
6. The problem of insufficiency following homograft replacement of the aortic valve / W. G. Bigelow [et al.] // J Thorac Cardiovasc Surg. – 1967. – Vol. 54. – P. 478–90.
7. A comparison of aortic valve replacement with viable cryopreserved and fresh allograft valves, with a note on chromosomal studies / M. F. O’Brien [et al.] // J Thorac Cardiovasc Surg. – 1987. – Vol. 94. – P. 812–23.
8. Непосредственные результаты протезирования аортального клапана с использованием аллографтов / С. В. Спиридонов [и др.] // Новости хирургии. – 2014. – Т. 22, № 4. – С. 443–448.
9. Использование аллографтов в лечении инфекционного и протезного эндокардита аортального клапана / С. В. Спиридонов [и др.] // Кардиология в Беларуси. – 2015. – №6 (43). – С. 34–46.
10. Сравнение аллографтов и механических протезов в лечении инфекционного и протезного эндокардита / С. В. Спиридонов [и др.] // Кардиология в Беларуси. – 2016. – № 2 (8). – С. 182–198.
11. Early systemic cellular immune response in children and young adults receiving decellularized fresh allografts for pulmonary valve replacement / A. Neumann [et al.] // Tissue engineering: Part A. – 2014. – Vol. 20. – P. 1003–11.
12. Bioengineered human and allogeneic pulmonary valve conduits chronically implanted orthotopically in baboons: hemodynamic performance and immunological consequences/ R.A.Hopkins [et al.] // JTCVS. – 2013. – Vol. 145. – P. 1098–1107.
13. Performance and morphology of decellularized pulmonary valves implanted in juvenile sheep / R. W. Quinn [et al.] // Ann Thorac Surg. – 2011. – Vol. 92. – P. 131–7. свежих, криоконсервированных онсервированный аллографт Девитализированный аллографт p N s в , МПа F max , N s в , МПа 4 37,3) 0,9 (0,8–1,1) 33,1 (18,2–38,9) 0,9 (0,6–1,1) >0,05 ых аллографтов: А – образцы аорты; Б – образцы створки ого клапана
14. Inflammatory responses of tissue-engineered xenografts in a clinical scenario / S. Mathapati [et al.] // ICVTS. – 2011. – Vol. 12. – P. 360–5.
15. Initial pediatric cardiac experience with decellularized allograft patches / G. K. Lofland [et al.] // Ann Thorac Surg. – 2012. – Vol. 93. – P. 968–71.
16. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts / P. E. Dijkman [et al.] // Biomaterials. – 2012. – Vol. 33 (18). – P. 4545–54.
17. Tissue-engineered mitral valve: morphology and biomechanics / P. Iablonskii [et al.] // ICVTS. – 2015. – Vol. 20. – P. 712–9.
18. Structural integrity of collagen and elastin in SynerGraft® decellularized-cryopreserved human heart valves / C. J. Gerson [et al.] // Cryobiology. – 2012. – Vol. 64. – P. 33–42.
19. Девитализация клапанных аллографтов – исторические аспекты и опыт РНПЦ «Кардиология» / Н. Н. Щетинко [и др.] // Инновационные технологии в медицине. – 2016. – № 1–2. – С. 48–67.