Comparative study of four aortic allograft decellularization techniques

  • M. M. Shchatsinka Republican Scientific and Practical Center “Cardiology”, Minsk, Belarus
  • S. V. Spirydonau Republican Scientific and Practical Center “Cardiology”, Minsk, Belarus
  • V. A. Adzintsou Republican Scientific and Practical Center “Cardiology”, Minsk, Belarus
  • A. P. Shket Republican Scientific and Practical Center “Cardiology”, Minsk, Belarus
  • V. A. Yudzina City Clinical Pathologoanatomic Bureau, Minsk, Belarus
  • R. M. Smaliakova N. N. Alexandrov National Cancer Centre, Minsk, Belarus
  • A. I. Suboch N. N. Alexandrov National Cancer Centre, Minsk, Belarus
  • S. I. Dryk 9th City Clinical Hospital, Minsk, Belarus
  • M. K. Yurkshtovich Belarusian State University, Minsk, Belarus
  • Y. P. Ostrovsky Republican Scientific and Practical Center “Cardiology”, Minsk, Belarus
Keywords: aortic allograft, decellularization, tissue engineering

Abstract

Objective: to assess four aortic allograft decellularization techniques.

Materials and methods. 40 aortic allografts were decellularized using 4 techniques (n=10 in each group), depending on reagents used: 1) 1% deoxycholic acid; 2) 0,5% sodium deoxycholate, 0,5% sodium dodecylsulfate; 3) 1% sodium deoxy-cholate, 1% Triton X-100; 4) 3% Triton X-100, 0.04% EDTA. On decellularization completion, specimens were subjected to histologic (hematoxylin and eosin) and histochemic (MSB, orcein) studies; residual DNA content was assessed, as well as mechanical testing.

Results and discussion. Decellularization with 0.5% sodium deoxycholate, 0.5% sodium dodecylsulfate resulted in com-plete cell removal with good preservation of connective tissue matrix. Statistically significant reduction of DNA content in aorta (31,05 vs 2,58 ng/mg, p<0,01) and aortic valve leaflet (39,7 vs 1,36 ng/mg, p<0,05) was revealed. According to mechanical testing results, there were no significant differences between fresh, cryopreserved and decellularized allografts.

Conclusions. Complete allograft decellularization was achieved using 0.5% sodium deoxycholate, 0.5% sodium dodecy-lsulfate, with statistically significant DNA reduction and without affecting mechanical properties of the valve.

References

1. An experimental study of aortic valve homografts / C. R. Lam, H. H. Aram, E. R. Monnell // Surg Gynec Obstet. – 1952. – Vol. 94. – P. 129–35.

2. Duran C., Gunning A. J. Aortic homograft valve transplantation // Ann R Coll Surg Engl. – 1966. – Vol. 39 (2). – P. 190–2.

3. Murray G. Homologous aortic-valve-segment transplants as surgical treatment for aortic and mitral insufficiency // Angiology. – 1956. – Vol. 7 (5). – P. 466–71.

4. Ross D. N. Homograft replacement of the aortic valve // Lancet. – 1962. – Vol. 2. – P. 487.

5. Barratt-Boyes B. Homograft aortic valve replacement in aortic incompetence and stenosis // Thorax. – 1964. – Vol. 19. – P. 131–50.

6. The problem of insufficiency following homograft replacement of the aortic valve / W. G. Bigelow [et al.] // J Thorac Cardiovasc Surg. – 1967. – Vol. 54. – P. 478–90.

7. A comparison of aortic valve replacement with viable cryopreserved and fresh allograft valves, with a note on chromosomal studies / M. F. O’Brien [et al.] // J Thorac Cardiovasc Surg. – 1987. – Vol. 94. – P. 812–23.

8. Непосредственные результаты протезирования аортального клапана с использованием аллографтов / С. В. Спиридонов [и др.] // Новости хирургии. – 2014. – Т. 22, № 4. – С. 443–448.

9. Использование аллографтов в лечении инфекционного и протезного эндокардита аортального клапана / С. В. Спиридонов [и др.] // Кардиология в Беларуси. – 2015. – №6 (43). – С. 34–46.

10. Сравнение аллографтов и механических протезов в лечении инфекционного и протезного эндокардита / С. В. Спиридонов [и др.] // Кардиология в Беларуси. – 2016. – № 2 (8). – С. 182–198.

11. Early systemic cellular immune response in children and young adults receiving decellularized fresh allografts for pulmonary valve replacement / A. Neumann [et al.] // Tissue engineering: Part A. – 2014. – Vol. 20. – P. 1003–11.

12. Bioengineered human and allogeneic pulmonary valve conduits chronically implanted orthotopically in baboons: hemodynamic performance and immunological consequences/ R.A.Hopkins [et al.] // JTCVS. – 2013. – Vol. 145. – P. 1098–1107.

13. Performance and morphology of decellularized pulmonary valves implanted in juvenile sheep / R. W. Quinn [et al.] // Ann Thorac Surg. – 2011. – Vol. 92. – P. 131–7. свежих, криоконсервированных онсервированный аллографт Девитализированный аллографт p N s в , МПа F max , N s в , МПа 4 37,3) 0,9 (0,8–1,1) 33,1 (18,2–38,9) 0,9 (0,6–1,1) >0,05 ых аллографтов: А – образцы аорты; Б – образцы створки ого клапана

14. Inflammatory responses of tissue-engineered xenografts in a clinical scenario / S. Mathapati [et al.] // ICVTS. – 2011. – Vol. 12. – P. 360–5.

15. Initial pediatric cardiac experience with decellularized allograft patches / G. K. Lofland [et al.] // Ann Thorac Surg. – 2012. – Vol. 93. – P. 968–71.

16. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts / P. E. Dijkman [et al.] // Biomaterials. – 2012. – Vol. 33 (18). – P. 4545–54.

17. Tissue-engineered mitral valve: morphology and biomechanics / P. Iablonskii [et al.] // ICVTS. – 2015. – Vol. 20. – P. 712–9.

18. Structural integrity of collagen and elastin in SynerGraft® decellularized-cryopreserved human heart valves / C. J. Gerson [et al.] // Cryobiology. – 2012. – Vol. 64. – P. 33–42.

19. Девитализация клапанных аллографтов – исторические аспекты и опыт РНПЦ «Кардиология» / Н. Н. Щетинко [и др.] // Инновационные технологии в медицине. – 2016. – № 1–2. – С. 48–67.
Published
2017-05-15
How to Cite
1.
Shchatsinka MM, Spirydonau SV, Adzintsou VA, Shket AP, Yudzina VA, Smaliakova RM, Suboch AI, Dryk SI, Yurkshtovich MK, Ostrovsky YP. Comparative study of four aortic allograft decellularization techniques. ujcvs [Internet]. 2017May15 [cited 2025Jan.22];(1 (27):62-9. Available from: https://cvs.org.ua/index.php/ujcvs/article/view/180
Section
ACQUIRED HEART DISEASES