Myocardial Viability Multimodality Visualization: Ukrainian Cardiovascular Surgeons Association Expert Consensus Guidelines

  • Vasyl V. Lazoryshynets National Amosov Institute of Cardiovascular Surgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • Anatoliy V. Rudenko National Amosov Institute of Cardiovascular Surgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • Svitlana V. Fedkiv National Amosov Institute of Cardiovascular Surgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • Sergiy V. Potashev National Amosov Institute of Cardiovascular Surgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • Sergii V. Salo National Amosov Institute of Cardiovascular Surgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • Oleksandra A. Mazur National Amosov Institute of Cardiovascular Surgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
Keywords: stress-echocardiography, cardiac magnetic resonance imaging, single photon emission computed tomography, positron emission tomography, multisliced computed tomography

Abstract

Myocardial loss due to necrosis in coronary artery disease (CAD) remains the main cause of heart failure. In these circumstances myocardial mass loss severity identification by cardiac visualization and, conversely, myocardial visualization evaluation are useful from the clinical point of view for decision making and therapeutical strategy choice in patients with left ventricular ischemic dysfunction.

Myocardial viability in clinical practice is defined as myocardium in acute or chronic CAD or other myocardial pathology with contractile dysfunction with preserved electric function and metabolism with potential to restore myocardial function after revascularization or other interventions. There is a number of pathophysiological conditions explaining viability and often coexisting. Visualization in cardiology and cardiac surgery allows myocardial viability identification using different methodologies and principles in order to predict potential myocardium response to treatment and optimal therapeutic strategy choice.

The aim of these Guidelines is to provide comprehensive and critical review of contemporary indications and methods of myocardial viability evaluation as well as to describe state of art standards for these techniques and multimodality visualization results interpretation, including clinical scenarios where it could be useful.

This paper is based on an expert consensus document from the European Association of Cardiovascular Imaging (EACVI) (2021) and reviews up-to-date data about viable myocardium pathophysiology and its assessment visualization methods, particularly, modern imaging techniques including stress echocardiography with B-mode speckle tracking (STE), single photon emission computed tomography (SPECT), positron emission tomography (PET) cardiovascular magnetic resonance imaging (cardiac MRI) and multisliced computed tomography (MSCT). It also provides clinical guidelines for these imaging methods acquisition, interpretation and standardization. The most widespread clinical scenarios, where myocardial viability assessment would be useful, are presented.

References

1. Almeida AG, Carpenter JP, Cameli M, Donal E, Dweck MR, Flachskampf FA, Maceira AM, Muraru D, Neglia D, Pasquet A, Plein S, Gerber BL. Multimodality imaging of myocar-dial viability: an expert consensus document from the European Association of Cardiovascular Imaging (EACVI).Eur Heart J Cardiovasc Imaging. 2021;22(8):e97-e125. https://doi.org/10.1093/ehjci/jeab053

2. Underwood SR, Bax JJ, vom Dahl J, Henein MY, Knuuti J, van Rossum AC, Schwarz ER, Vanoverschelde JL, van der Wall EE, Wijns W. Imaging techniques for the assessment of myocardial hibernation. Report of a Study Group of the European Society of Cardiology. Eur Heart J. 2004;25(10):815-36. https://doi.org/10.1016/j.ehj.2004.03.012

3. Shah BN, Khattar RS, Senior R. The hibernating myocardium: current concepts, diagnostic dilemmas, and clinical challenges in the post-STICH era. Eur Heart J. 2013;34(18):1323-36. https://doi.org/10.1093/eurheartj/eht018

4. Vanoverschelde JL, Wijns W, Borgers M, Heyndrickx G, Depré C, Flameng W, Melin JA. Chronic myocardial hibernation in humans. From bedside to bench. Circulation. 1997;95(7):1961-71. https://doi.org/10.1161/01.cir.95.7.1961

5. Wijns W, Vatner SF, Camici PG. Hibernating myocardium. N Engl J Med. 1998;339(3):173-81. https://doi.org/10.1056/NEJM199807163390307

6. Kloner RA. Stunned and hibernating myocardium: where are we nearly 4 decades later? J Am Heart Assoc. 2020;9(3):e015502. https://doi.org/10.1161/JAHA.119.015502

7. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest. 1975;56:978-85. https://doi.org/10.1172/JCI108178

8. Rahimtoola SH. The hibernating myocardium. Am Heart J. 1989;117(1):211-21. https://doi.org/10.1016/0002-8703(89)90685-6

9. Bax JJ, Schinkel AF, Boersma E, Elhendy A, Rizzello V, Maat A, Roelandt JR, van der Wall EE, Poldermans D. Extensive left ventricular remodeling does not allow viable myocardium to improve in left ventricular ejection fraction after revascularization and is associated with worse long-term prognosis. Circulation. 2004;110(11 Suppl 1):II18-22. https://doi.org/10.1161/01.CIR.0000138195.33452.b0

10. Lima JA, Becker LC, Melin JA, Lima S, Kallman CA, Weisfeldt ML, Weiss JL. Impaired thickening of nonischemic myocardium during acute regional ischemia in the dog. Circulation. 1985;71(5):1048-59. https://doi.org/10.1161/01.cir.71.5.1048

11. Nagueh SF. Mechanical dyssynchrony in congestive heart failure: diagnostic and therapeutic implications. J Am Coll Cardiol. 2008;51(1):18-22. https://doi.org/10.1016/j.jacc.2007.08.052

12. Gewirtz H, Dilsizian V. Myocardial viability: survival mechanisms and molecular imaging targets in acute and chronic ischemia. Circ Res. 2017;120(7):1197-212. https://doi.org/10.1161/CIRCRESAHA.116.307898

13. McDiarmid AK, Pellicori P, Cleland JG, Plein S. Taxonomy of segmental myocardial systolic dysfunction. Eur Heart J. 2017;38(13):942-54. https://doi.org/10.1093/eurheartj/ehw140

14. Amzulescu MS, De Craene M, Langet H, Pasquet A, Vancraeynest D, Pouleur AC, Vanoverschelde JL, Gerber BL. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. Eur Heart J Cardiovasc Imaging. 2019;20(6):605-19. https://doi.org/10.1093/ehjci/jez041

15. Migrino RQ, Ahn KW, Brahmbhatt T, Harmann L, Jurva J, Pajewski NM. Usefulness of two-dimensional strain echocardiography to predict segmental viability following acute myocardial infarction and optimization using bayesian logistic spatial modeling. Am J Cardiol. 2009;104(8):1023-9. https://doi.org/10.1016/j.amjcard.2009.05.049

16. Lyseggen E, Skulstad H, Helle-Valle T, Vartdal T, UrheimS, Rabben SI, Opdahl A, Ihlen H, Smiseth OA. Myocardial strain analysis in acute coronary occlusion: a tool to assess myocardial viability and reperfusion. Circulation2005;112 (25):3901-10. https://doi.org/10.1161/CIRCULATIONAHA.105.533372

17. Huttin O, Marie PY, Benichou M, Bozec E, Lemoine S, Mandry D, Juillière Y, Sadoul N, Micard E, Duarte K, Beaumont M, Rossignol P, Girerd N, Selton-Suty C. Temporal deformation pattern in acute and late phases of ST-elevation myocardial infarction: incremental value of longitudinal post-systolic strain to assess myocardial viability. Clin Res Cardiol. 2016;105(10):815-26. https://doi.org/10.1007/s00392-016-0989-6

18. Sicari R, Nihoyannopoulos P, Evangelista A, Kasprzak J, Lancellotti P, Poldermans D, Voigt JU, Zamorano JL; European Association of Echocardiography. Stress echocardiography expert consensus statement-executive summary: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur Heart J. 2009;30(3):278-89. https://doi.org/10.1093/eurheartj/ehn492

19. Senior R, Becher H, Monaghan M, Agati L, Zamorano J, Vanoverschelde JL, Nihoyannopoulos P, Edvardsen T, Lancellotti P; EACVI Scientific Documents Committee for 2014–16 and 2016–18; EACVI Scientific Documents Committee for 2014–16 and 2016–18. Clinical practice of contrast echocardiography: recommendation by the European Association of Cardiovascular Imaging (EACVI) 2017. Eur Heart J Cardiovasc Imaging. 2017;18(11):1205-1205af. https://doi.org/10.1093/ehjci/jex182

20. Geleijnse ML, Fioretti PM, Roelandt JR. Methodology, feasibility, safety and diagnostic accuracy of dobutamine stress echocardiography. J Am Coll Cardiol. 1997;30(3):595-606. https://doi.org/10.1016/s0735-1097(97)00206-4

21. Afridi I, Qureshi U, Kopelen HA, Winters WL, Zoghbi WA. Serial changes in response of hibernating myocardium to inotropic stimulation after revascularization: a dobutamine echocardiographic study. J Am Coll Cardiol.1997;30(5):1233-40. https://doi.org/10.1016/s0735-1097(97)00308-2

22. Senior R, Lahiri A. Enhanced detection of myocardial ischemia by stress dobutamine echocardiography utilizing the “biphasic” response of wall thickening during low and high dose dobutamine infusion. J Am Coll Cardiol. 1995;26(1):26-32. https://doi.org/10.1016/0735-1097(95)00139-q

23. Picano E. Stress echocardiography. From pathophysiological toy to diagnostic tool. Circulation. 1992;85(4):1604-12. https://doi.org/10.1161/01.cir.85.4.1604

24. Pingitore A, Picano E, Colosso MQ, Reisenhofer B, Gigli G, Lucarini AR, Petix N, Previtali M, Bigi R, Chiarandà G, Minardi G, de Alcantara M, Lowenstein J, Sclavo MG, Palmieri C, Galati A, Seveso G, Heyman J, Mathias W Jr, Casazza F, Sicari R, Raciti M, Landi P, Marzilli M. The atropine factor in pharmacologic stress echocardiography. Echo Persantine (EPIC) and Echo Dobutamine International Cooperative (EDIC) Study Groups. J Am Coll Cardiol. 1996;27(5):1164-70. https://doi.org/10.1016/0735-1097(95)00586-2

25. Picano E, Bedetti G, Varga A, Cseh E. The comparable diagnostic accuracies of dobutamine-stress and dipyridamole-stress echocardiographies: a meta- analysis. Coron Artery Dis. 2000;11(2):151-9. https://doi.org/10.1097/00019501-200003000-00010

26. Bansal M, Jeffriess L, Leano R, Mundy J, Marwick TH. Assessment of myocardial viability at dobutamine echocardiography by deformation analysis using tissue velocity and speckle-tracking. JACC Cardiovasc Imaging. 2010;3(2):121-31. https://doi.org/10.1016/j.jcmg.2009.09.025

27. Hanekom L, Jenkins C, Jeffries L, Case C, Mundy J, Hawley C, Marwick TH. Incremental value of strain rate analysis as an adjunct to wall-motion scoring for assessment of myocardial viability by dobutamine echocardiography: a follow-up study after revascularization. Circulation. 2005;112(25):3892-900. https://doi.org/10.1161/CIRCULATIONAHA.104.489310

28. Camici PG, Prasad SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability. Circulation. 2008;117(1):103-14. https://doi.org/10.1161/CIRCULATIONAHA.107.702993

29. Senior R, Kaul S, Raval U, Lahiri A. Impact of revascularization and myocardial viability determined by nitrate-enhanced Tc-99m sestamibi and Tl-201 imaging on mortality and functional outcome in ischemic cardiomyopathy. J Nucl Cardiol. 2002;9(5):454-62. https://doi.org/10.1067/mnc.2002.123913

30. Tilkemeier PL, Bourque J, Doukky R, Sanghani R, Weinberg RL. ASNC imaging guidelines for nuclear cardiology procedures: standardized reporting of nuclear cardiology procedures. J Nucl Cardiol. 2017;24(6):2064-128. https://doi.org/10.1007/s12350-017-1057-y

31. Di Carli MF, Davidson M, Little R, Khanna S, Mody FV, Brunken RC, et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol. 1994;73(8):527-33. https://doi.org/10.1016/0002-9149(94)90327-1

32. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, Gropler RJ, Knuuti J, Schelbert HR, Travin MI. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol. 2016;23(5):1187-226. https://doi.org/10.1007/s12350-016-0522-3

33. vom Dahl J, Eitzman DT, al-Aouar ZR, Kanter HL, Hicks RJ, Deeb GM, Kirsh MM, Schwaiger M. Relation of regional function, perfusion, and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation. 1994;90(5):2356-66. https://doi.org/10.1161/01.cir.90.5.2356

34. Adams DF, Hessel SJ, Judy PF, Stein JA, Abrams HL. Computed tomography of the normal and infarcted myocardium. AJR Am J Roentgenol. 1976;126(4):786-91. https://doi.org/10.2214/ajr.126.4.786

35. Matsuda T, Kido T, Itoh T, Saeki H, Shigemi S, Watanabe K, Kido T, Aono S, Yamamoto M, Matsuda T, Mochizuki T. Diagnostic accuracy of late iodine enhancement on cardiac computed tomography with a denoise filter for the evaluation of myocardial infarction. Int J Cardiovasc Imaging. 2015;31(Suppl 2):177-85. https://doi.org/10.1007/s10554-015-0716-9

36. Dweck MR, Williams MC, Moss AJ, Newby DE, Fayad ZA. Computed tomography and cardiac magnetic resonance in ischemic heart disease. J Am Coll Cardiol. 2016;68(20):2201-16. https://doi.org/10.1016/j.jacc.2016.08.047

37. Bax JJ, Poldermans D, Elhendy A, Boersma E, Rahimtoola SH. Sensitivity, specificity, and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr Probl Cardiol. 2001;26(2):147-81. https://doi.org/10.1067/mcd.2001.109973

38. Romero J, Xue X, Gonzalez W, Garcia MJ. CMR imaging assessing viability in patients with chronic ventricular dysfunction due to coronary artery disease: a meta- analysis of prospective trials. JACC Cardiovasc Imaging. 2012;5(5):494-508. https://doi.org/10.1016/j.jcmg.2012.02.009

39. Panza JA, Ellis AM, Al-Khalidi HR, Holly TA, Berman DS, Oh JK, Pohost GM, Sopko G, Chrzanowski L, Mark DB, Kukulski T, Favaloro LE, Maurer G, Farsky PS, Tan RS, Asch FM, Velazquez EJ, Rouleau JL, Lee KL, Bonow RO. Myocardial viability and long-term outcomes in ischemic cardiomyopathy. N Engl J Med. 2019;381(8):739-48. https://doi.org/10.1056/NEJMoa1807365

40. Velazquez EJ, Lee KL, Jones RH, Al-Khalidi HR, Hill JA, Panza JA, Michler RE, Bonow RO, Doenst T, Petrie MC, Oh JK, She L, Moore VL, Desvigne-Nickens P, Sopko G, Rouleau JL; STICHES Investigators. Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med. 2016;374(16):1511-20. https://doi.org/10.1056/NEJMoa1602001

41. Garcia MJ, Kwong RY, Scherrer-Crosbie M, Taub CC, Blankstein R, Lima J, Bonow RO, Eshtehardi P, Bois JP; American Heart Association Council on Cardiovascular Radiology and Intervention and Council on Clinical Cardiology. State of the art: imaging for myocardial viability: a scientific statement from the American Heart Association. Circ Cardiovasc Imaging. 2020;13(7):e000053. https://doi.org/10.1161/HCI.0000000000000053

42. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129-200. https://doi.org/10.1093/eurheartj/ehw128

43. Bleeker GB, Kaandorp TA, Lamb HJ, Boersma E, Steendijk P, de Roos A, van der Wall EE, Schalij MJ, Bax JJ. Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation. 2006;113(7):969-76. https://doi.org/10.1161/CIRCULATIONAHA.105.543678

44. Adelstein EC, Tanaka H, Soman P, Miske G, Haberman SC, Saba SF, Gorcsan J 3rd. Impact of scar burden by single-photon emission computed tomography myocardial perfusion imaging on patient outcomes following cardiac resynchronization therapy. Eur Heart J. 2011;32(1):93-103. https://doi.org/10.1093/eurheartj/ehq389

45. Harb SC, Toro S, Bullen JA, Obuchowski NA, Xu B, Trulock KM, Varma N, Rickard J, Grimm R, Griffin B, Flamm SD, Kwon DH. Scar burden is an independent and incremental predictor of cardiac resynchronisation therapy response. Open Heart. 2019;6(2):e001067. https://doi.org/10.1136/openhrt-2019-001067

46. Kloosterman M, Damman K, Van Veldhuisen DJ, Rienstra M, Maass AH. The importance of myocardial contractile reserve in predicting response to cardiac resynchronization therapy. Eur J Heart Fail. 2017;19(7):862-9. https://doi.org/10.1002/ejhf.768

47. Piscione F, Perrone-Filardi P, De Luca G, Prastaro M, Indolfi C, Golino P, Dellegrottaglie S, Chiariello M. Low dose dobutamine echocardiography for predicting functional recovery after coronary revascularisation. Heart. 2001;86(6):679-86. https://doi.org/10.1136/heart.86.6.679
Published
2022-06-24
How to Cite
Lazoryshynets, V. V., Rudenko, A. V., Fedkiv, S. V., Potashev, S. V., Salo, S. V., & Mazur, O. A. (2022). Myocardial Viability Multimodality Visualization: Ukrainian Cardiovascular Surgeons Association Expert Consensus Guidelines. Ukrainian Journal of Cardiovascular Surgery, 30(2), 88-110. Retrieved from https://cvs.org.ua/index.php/ujcvs/article/view/496

Most read articles by the same author(s)

1 2 3 4 > >>