Neurally Adjusted Ventilatory Assist Mode of Mechanical Ventilation in Neonates with Hypoxic-Ischemic Encephalopathy

  • D. M. Surkov Dnipropetrovs’k Regional Children’s Hospital, Dnipro, Ukraine
Keywords: hypoxia, ischemia, encephalopathy, mechanical ventilation, resistance index, NAVA

Abstract

Ventilator support is considered to be one of the key components of intensive care in term neonates with mod-erate to severe hypoxic-ischemic encephalopathy (HIE). Most authors recommend mechanical ventilation during the peri-od of therapeutical hypothermia and after rewarming. Traditionally, pressure control ventilation has been used for ventilator support in neonates, but its disadvantage could be significant fluctuations in the pCO2 level which affects cerebral perfusion. An alternative may be the new neurally adjusted ventilatory assist (NAVA) mode of ventilation. There is a number of studies on using NAVA mode in newborns, both term and preterm, but its impact on cerebral perfusion compared to conventional modes is unknown.

The aim. To compare the impact of NAVA and conventional modes of mechanical ventilation on cerebral perfusion dur-ing the acute period of HIE in term neonates.

Materials and methods. Data on 205 term infants with Sarnat stage II–III HIE were collected during ≤ 72 hours of life. All the neonates were distributed by simple open randomization in NAVA group (n = 18) and control group (n = 187), which was stratified on subgroups of pressure control (РС) mode (n = 152), synchronized intermittent mandatory ventilation/ pressure support ventilation (SIMV/PSV) (n = 16) and pressure regulated volume control (PRVC) (n = 19). Comparative analysis of the influence of NAVA and other modes on cerebral perfusion during the acute period of neonatal HIE has been performed.

Results and discussion. Compared to conventional modes of ventilation – PC, SIMV/PSV and PRVC, – NAVA group demonstrated significantly better Doppler indices of cerebral blood flow RI (0.66 [0.58–0.72] vs. 0.70 [0.67–0.74], р = 0.021) and РІ (1.2 [1.0–1.40] vs. 1.3 [1.2–1.5], р = 0.032) on the 3rd day of treatment, at the end of therapeutic hypother-mia period and at the start of rewarming. Subsequent analysis of variance (ANOVA) confirmed the positive impact of NAVA mode on cerebral perfusion (p = 0.009), but didn’t found significant correlations between Doppler indices of cerebral blood flow and PC (р = 0.140), SIMV/PSV (р = 0.446) and PRVC (р = 0.601) ventilation modes.

Conclusion. Compared to conventional modes of ventilation (PC, SIMV/PSV and PRVC), NAVA demonstrated better profile of influence on cerebral perfusion indices in term neonates during the acute period of HIE.

References

  1. Foster JP, Buckmaster A, Sinclair L, Lees S, Guaran R. Nasal continuous positive airway pressure (nCPAP) for term neonates with respiratory distress.Cochrane Database of Systematic Reviews. 2015;11:CD011962. https://doi.org/10.1002/14651858.CD011962.
  2. Dewez JE, van den Broek N. Continuous positive airway pressure (CPAP) to treat respiratory distress in newborns in low- and middle-income countries. Trop Doct. 2017;47(1):19–22. https://doi.org/10.1177/0049475516630210.
  3. Levene MI, de Vries L. Hypoxic-ischemic encephalopathy. In: Martin RJ, Fanaroff AA, Walsh MC, editors. Fanaroff and Martin’s neonatal-perinatal medicine: diseases of the fetus and infant. 9th ed. St. Louis, Missoury: Elseiver Mos-by Inc.; 2011. p. 952–975.
  4. Zanelli SA, Stanley DP. Hypoxic-ischemic encephalopathy [Internet]. 2018 [Epub 2018 Jul 18]. Available from: https://emedicine.medscape.com/article/973501-overview#a8
  5. Verma P, Kalraiya A. Respiratory compliance of new-borns after birth and their short-term outcomes. Int J Contemp Pediatr. 2017;4(2):620–624. https://doi.org/10.18203/2349-3291.ijcp20170720
  6. Goldsmith JP, Karotkin E, Suresh G, Keszler M. Assisted Ventilation of the Neonate, 6th Edition. Evidence-Based Approach to Newborn Respiratory Care. Elsevier; 2017.
  7. Tiffany LB. Assisted ventilation of the neonate. JAMA. 2012;307(22):2437. https://doi.org/10.1001/jama.307.22.2437-a
  8. Pappas A, Shankaran S, Laptook AR, Langer JC, Bara R, Ehrenkranz RA, et al. Hypocarbia and adverse out-come in neonatal hypoxic-ischemic encephalopathy. J Pediatr. 2011;158(5):752–8. https://doi.org/10.1016/j.jpeds.2010.10.019.
  9. Bancalari E, Claure N. Advances in respiratory support for high risk newborn infants. Maternal Health, Neonatol-ogy and Perinatology. 2015;1:13. https://doi.org/10.1186/s40748-015-0014-5
  10. Gupta S, Janakiraman S. Volume ventilation in neonates. Paediatrics and Child Health. 2018;8(1):1–5. https://doi.org/10.1016/j.paed.2017.09.004
  11. Chitty H, Sinha S. Volume-targeted ventilation in newborn infants. Clinical Practice. 2015;11(1):8–12.
  12. Krieger TJ, Wald M. Volume-targeted ventilation in the neonate: benchmarking ventilators on an active lung mod-el. Pediatr Crit Care Med. 2017;18(3):241–8. https://doi.org/10.1097/PCC.0000000000001088
  13. Klingenberg C, Wheeler KI, McCallion N, Morley CJ, Davis PG. A comparison of volume-targeted ventila-tion modes with traditional pressure-limited ventilation modes for newborn babies. Cochrane Database Syst Rev. 2017;10:CD003666. https://doi.org/10.1002/14651858.CD003666.pub4
  14. Wang C, Guo L, Chi C, Wang X, Guo L, Wang W, et al. Mechanical ventilation modes for respiratory distress syndrome in infants: a systematic review and network meta-analysis. Crit Care. 2015;19:108. https://doi.org10.1186/s13054-015-0843-7
  15. Greenough A, Murthy V, Milner AD, Rossor TE, Sundaresan A. Synchronized mechanical ventilation for respiratory support in newborn infants. Cochrane Database Syst Rev. 2016;9:CD000456. https://doi.org/10.1002/14651858.cd000456.pub4.CD000456
  16. Rocha G, Soares P, Gonзalves A, Silva AI, Almeida D, Figueiredo S, et al. Respiratory care for the ventilated neonate. Canadian Respiratory Journal. 2018;2018:7472964. https://doi.org/10.1155/2018/7472964
  17. Guthrie SO, Lynn C, Lafleur BJ, Donn SM, Walsh WF. A crossover analysis of mandatory minute ventilation compared to synchronized intermittent mandatory ventilation in neonates. J Perinatol. 2005;25(10):643–6. https://doi.org/10.1038/sj.jp.7211371
  18. Claure N, Bancalari E. New modes of mechanical ventilation in the preterm newborn: evidence of benefit. Arch Dis Child Fetal Neonatal Ed. 2007;92(6):F508– F512. https://doi.org/10.1136/adc.2006.108852
  19. Serra A, Stronati M. Pressure support ventilation in neonatal age: lights and shadows. Pediatr Med Chir. 2005;27(6):13–18. PMID: 16922007.
  20. Rozo # JC, Kru #ger T. Pressure support ventilation – a new triggered ventilation mode for neonates. Lu #beck: Dra #ger Medizintechnik GmbH; 2015.
  21. Hokenson MA, Shepherd EG. Neonatal pressure support ventilation: are we doing what we think we are doing? Respiratory Care. 2014;59(10):1606–7. https://doi.org/10.4187/respcare.03616.
  22. El-Rahman Ali AA, El-Razik El Wahsha RA, El-Sattar Aghaa MA, Tawadroosb BB. Pressure regulated volume controlled ventilation versus synchronized intermittent mandatory ventilation in COPD patients suffering from acute respiratory failure. Egyptian Journal of Chest Diseases and Tuberculosis. 2016;65(1):121–5. https://doi.org/10.1016/j.ejcdt.2015.08.004
  23. Stein H, Firestone K. Application of neurally adjusted ventilatory assist in neonates. Semin Fetal Neonatal Med. 2014;19(1):60–9. https://doi.org/10.1016/j.siny.2013.09.005
  24. Kallio M, Peltoniemi O, Anttila E, Pokka T, Kontiokari T. Neurally adjusted ventilatory assist (NAVA) in pediatric intensive care – a randomized controlled trial. Pediatr Pulmonol. 2015;50(1):55–62. https://doi.org/10.1002/ppul.22995
  25. Ducharme-Crevier L, Beck J, Essouri S, Jouvet P, Emeriaud G. Neurally adjusted ventilatory assist (NAVA) allows patient-ventilator synchrony during pediatric noninvasive ventilation: a crossover physiological study. Crit Care. 2015;19:44. https://doi.org/10.1186/s13054-015-0770-7
  26. Goligher EC, Douflй G, Fan E.Update in mechanical ventilation, sedation, and outcomes 2014. Am J Respir Crit Care Med. 2015;191(12):1367–73. https://doi.org/10.1164/rccm.201502-0346UP
  27. Liet J-M, Barriиre F, Gaillard-Le Roux B, Bourgoin P, Legrand A, Joram N. Physiological effects of invasive ventilation with neurally adjusted ventilatory assist (NAVA) in a crossover study. BMC Pediatr. 2016;16:180. https://doi.org/10.1186/s12887-016-0717-4
  28. Arca MJ, Uhing M, Wakeham M. Current concepts in acute respiratory support for neonates and children. Semin Pediatr Surg. 2015;24(1):2–7. https://doi.org/10.1053/j.sempedsurg.2014.11.001
  29. Rossor TE, Shetty S, Greenough A. Neurally adjusted ventilatory assist for neonatal respiratory support. Cochrane Database of Systematic Reviews. 2016;6:CD012251. https://doi.org/10.1002/14651858.CD012251
  30. Garcia-Muсoz Rodrigo F, Rivero Rodriguez S, Florido Rodriguez A, Martin Cruz FG, Diaz Pulido R. [Successful weaning and extubation in the premature newborn using neuraly adjusted ventilatory assist]. An Pediatr (Barc). 2015;82(1):e126–e130. (Article in Spanish). https://doi.org/10.1016/j.anpedi.2014.01.024
  31. Piastra M, De Luca D, Costa R, Pizza A, De Sanctis R, Marzano L, et al. Neurally adjusted ventilatory assist vs pressure support ventilation in infants recovering fromsevere acute respiratory distress syndrome: Nested study. J Crit Care. 2014;29(2):312. e1–5. https://doi.org/10.1016/j.jcrc.2013.08.006
  32. Beck J, Emeriaud G, Liu Y, Sinderby C. Neurally-adjusted ventilatory assist (NAVA) in children: a systematic review. Minerva Anestesiol. 2016;82(8):874–83. PMID:26375790.
  33. Kadivar M, Mosayebi Z, Sangsari R, Soltan Alian H, Jedari Attari S. Neurally Adjusted Ventilatory Assist in neonates: a research study. Journal of Comprehensive Pediatrics. 2018;9(3):e62297. https://doi.org/10.5812/compreped.62297
  34. Narchi H, Chedid F. Neurally adjusted ventilator assist in very low birthweight infants: Current status. World J Methodol. 2015;5(2):62–7. https://doi.org/10.5662/wjm.v5i2.62
  35. Proisy M, Mitra S, Uria-Avellana C, Sokolska M, Robertson NJ, Le Jeune F. Brain perfusion imaging in neonates: an overview. American Journal of Neuroradiology. 2016;37(10):1766–73. https://doi.org/https://doi.org/10.3174/ajnr.A4778
  36. Wong F. Cerebral blood flow measurements in the neonatal brain. Prenatal and Postnatal Determinants of Development. 2016;109:69–87. https://doi.org/10.1007/978-1-4939-3014-2_5
  37. Orman G, Benson JE, Kweldam CF, Bosemani T, Tekes A, de Jong ME. Neonatal head ultrasonography today: a powerful imaging tool. Journal of Neuroimaging. 2015;25(1):31–55. https://doi.org/10.1111/jon.12108
  38. Gerner GJ, Burton VJ, Poretti A, Bosemani T, Cristofalo E, Tekes A, et al. Transfontanellar duplex brain ultrasonography resistive indices as a prognostic tool in neonatal hypoxic-ischemic encephalopathy before and after treatment with therapeutic hypothermia. Journal of Perinatology. 2016;36(3):202–6. https://doi.org/10.1038/jp.2015.169
  39. Elstad M, Whitelaw A, Thoresen M. Cerebral resistance index is less predictive in hypothermic encephalopathic newborns. Acta Paediatrica. 2011;100:1344–9. https://doi.org/10.1111/j.1651-2227.2011.02327.x
  40. Schirmer-Mikalsen K, Vik A, Skogvoll E, Moen KG, Solheim O, Klepstad P. Intracranial pressure during Pressure Control and Pressure-Regulated Volume Control ventilation in patients with traumatic brain injury: A randomized crossover trial. Neurocrit Care. 2016;24(3):33–41. https://doi.org/10.1007/s12028-015-0208-8 41.
  41. Arellano-Maric MP, Gregoretti C, Duiverman M, Windisch W. Long-term volume-targeted pressure-controlled ventilation: sense or nonsense? Eur Respir J. 2017;49(6). pii: 1602193. https://doi.org/10.1183/13993003.02193-2016
  42. Ashworth L, Norisue Y, Koster M, Anderson J, Takada J, Ebisu H. Clinical management of pressure control ventilation: An algorithmic method of patient ventilatory management to address «forgotten but important variables». J Crit Care. 2018;43:169–82. https://doi.org/10.1016/j.jcrc.2017.08.046
  43. Andrade LB, Ghedini RG, Dias AS, Piva JP. Neurally adjusted ventilatory assist in pediatrics: why, when, and how? Rev Bras Ter Intensiva. 2017;29(4):408–13. https://doi.org/10.5935/0103-507X.20170064
  44. Bordessoule A, Emeriaud G, Morneau S, Jouvet P, Beck J. Neurally adjusted ventilatory assist improves patient–ventilator interaction in infants as compared with conventional ventilation. Pediatr Res. 2012;72(2):194– 202. https://doi.org/10.1038/pr.2012.64
  45. Schmidt M, Kindler F, Cecchini J, Poitou T, Morawiec E, Persichini R, et al. Neurally adjusted ventilatory assist and proportional assist ventilation both improve patient-ventilator interaction. Crit Care. 2015;19:56. https://doi.org/10.1186/s13054-015-0763-6
  46. Mortamet G, Larouche A, Ducharme-Crevier L, Flйchelles O, Constantin G, Essouri S, et al. Patient-ventilator asynchrony during conventional mechanical ventilation in children. Ann Intensive Care. 2017;7(1):122. https://doi.org/10.1186/s13613-017-0344-8
  47. Baez Hernandez N, Milad A, Li Y, Van Bergen AH. Utilization of Neurally Adjusted Ventilatory Assist (NAVA) mode in infants and children undergoing congenital heart surgery: a retrospective review. Pediatr Cardiol. 2019 Mar;40(3):563–9. https://doi.org/10.1007/s00246-018-2027-0
  48. Kallio M, Koskela U, Peltoniemi O, Kontiokari T, Pokka T, Suo-Palosaari M, et al. Neurally adjusted ventilatory assist (NAVA) in preterm newborn infants with respiratory distress syndrome-a randomized controlled trial. Eur J Pediatr. 2016;175(9):1175–83. https://doi.org/10.1007/s00431-016-2758-y
  49. Shetty S, Hunt K, Peacock J, Ali K, Greenough A. Crossover study of Assist Control ventilation and Neurally Adjusted Ventilatory Assist. Eur J Pediatr. 2017;176(4):509–13. https://doi.org/10.1007/s00431-017-2866-3
  50. Rossor TE, Hunt KA, Shetty S, Greenough A. Neurally adjusted ventilatory assist compared to other forms of triggered ventilation for neonatal respiratory support. Cochrane Database Syst Rev. 2017;10:CD012251. https://doi.org/10.1002/14651858.CD012251.pub2
Published
2019-05-22
How to Cite
Surkov, D. M. (2019). Neurally Adjusted Ventilatory Assist Mode of Mechanical Ventilation in Neonates with Hypoxic-Ischemic Encephalopathy. Ukrainian Journal of Cardiovascular Surgery, (2 (35), 102-111. https://doi.org/10.30702/ujcvs/19.3505/028102-105
Section
GENERAL ISSUES of CARDIOVASCULAR SURGERY